Карта сайта

Это автоматически сохраненная страница от 02.05.2013. Оригинал был здесь: http://2ch.hk/b/res/47406908.html
Сайт a2ch.ru не связан с авторами и содержимым страницы
жалоба / abuse: admin@a2ch.ru

Чтв 02 Май 2013 02:47:47
Анон, вот объясни мне. Ты вечно поносишь кунов, которые состоят в отношениях с тнями. Называешь их биопроблемниками и рабами пизды. А почему ты решил, что они рабы? Что вообще ты подразумеваешь под этим выражением? Вот френдзонщики могут быть рабами, всякие омеги тоже. Но омега - не человек, о нем и говорить незачем. А вот нормальный кун - почему он раб пизды?


Чтв 02 Май 2013 02:50:23
>>47406908
Это какая-то извращенная проекция. Анону не дает покоя существование тян - он хочет их, вожделеет, мечтает хотя бы лизнуть сочную щель, но при этом, само собой, делает вид, что ему все это не нужно - титан одиночества, все дела
А кругом тысячи людей, у которых нет никаких проблем с тян - общаются, дружат, няшатся, ебутся - и у анона от этого подгорает пукло. И чтобы слегка остудить подгоревшее, анон делает ход конем - объявляет тех людей, у которых нет проблем в общении и отношениях с противоположным полом, биопроблемниками! Каково, а? Просто шик же!

Чтв 02 Май 2013 02:52:59
>>47406908
Дело в том, что 99% анона - тупое быдло, ничем не лучше постсоветского быдла, со своей въевшейся религией двачей и отсутствием мышления.

Чтв 02 Май 2013 02:53:27
>>47406908
Потому что раб низших инстинктов, исключительно из-за которых и состоит в отношениях с противоположным полом.
Такое быдло не поддается иному описанию, нежели биопроблемный раб.

Чтв 02 Май 2013 02:53:57
>>47407040
Ну вот знаешь, мог бы ты помолчать. Я тут сижу, скучаю, ожидаю жаркую дисскуссию, а ты первым постом правду-матку режешь.

Чтв 02 Май 2013 02:54:54
>>47407113
Да заебали уже эти дискуссии, на самом деле. Каждый раз - одно и то же

Чтв 02 Май 2013 02:55:19
>>47407040
А вот очередной биопроблемный уебок - вы только посмотрите на его ущербные теории:
>Анону не дает покоя существование тян - он хочет их, вожделеет, мечтает хотя бы лизнуть сочную щель, но при этом, само собой, делает вид, что ему все это не нужно
Сразу видно, человек дальше своего носа ничего не видит.

Чтв 02 Май 2013 02:56:02
>>47407095
Ты жрать хочешь? Это тоже низший инстинкт. Тем не менее тебя не смущает желание покушать. Тогда почему тебя смущает желание трахаться?

Чтв 02 Май 2013 02:56:54
>>47407040
у меня пригорел. Ты прямо в мой мозг смотришь, дай свой имейл для связи?

Чтв 02 Май 2013 02:57:00
>>47407152
А ты видишь дальше? Что плохого в общении с тянами?

Чтв 02 Май 2013 02:57:11
>>47407152
А вот и запахло горелым

Чтв 02 Май 2013 02:57:39
>>47406908
Раб - это человек, который зависит от чего, который ВЫНУЖДЕН делать что то, даже если ему это не нравиться, который не имеет собственного мнения, который прикован чем то, в данном случае инстинктами.

Чтв 02 Май 2013 02:58:30
>>47407095
Состоять в отношениях - это не только ебля, мой дорогой школьник

Чтв 02 Май 2013 02:59:06
>>47407040
бля а у меня шишка встала.
Я бы щас и щель лизнул и хуйца соснул - похуй, просто похуй.
Главное чтобы шишка стояла.

Чтв 02 Май 2013 02:59:51
>>47407040
А почему допускается лишь одна версия: подгорает пукло? Это, в свою очередь, такая же проекция, основанная, видимо, на собственном опыте. Тот факт, что человек может быть просто наплевать, в голову, конечно, не приходит?

Чтв 02 Май 2013 03:00:13
>>47406908
Омега - человек. Не человек тот, кто не умеет в творчество и живёт чтоб "Всё как у людей", это я как Бетка говорю.

Чтв 02 Май 2013 03:00:55
Все люди рабы. Кому-то отвратительны биопроблемники.
>поносишь кунов, которые состоят в отношениях с тнями
А такого вообще не было.

Чтв 02 Май 2013 03:00:57
>>47407179
Если не будешь жрать - сдохнешь. Если не будет пихать хуй в тухлую дыру ничего не случится.

Чтв 02 Май 2013 03:00:57
>>47407040
самая глупая теория, которую я слышал за эту неделю
Как же тебе приеклоу

Чтв 02 Май 2013 03:01:13
>>47407179
Хуйню не неси, я не могу отказаться от употребления пищи, как бы мне не хотелось.

Алсо, на самом же деле - зачем спорить с дураками?
Какие аргументы им не приводи, у них все всегда сводится к одному - "Тян нужны, но анон не может их получить и поэтому придумывает всякое".

Чтв 02 Май 2013 03:01:19
>>47407264
Ебать дебил, если твой уровень интеллекта на ровне с тупой шлюхой и тебе нравиться обсуждать с кем там её подруга Ленка ебалась, это лично твоя проблема.

Чтв 02 Май 2013 03:01:48
>>47406908
А вот и пиздятинкой запахло. Призываю в тред сажа - куна. НУ или вайпбригаду.

Чтв 02 Май 2013 03:01:57
Сука! Похоже нецарапающиеся стекло всё-таки царапается, но очень мелкими царапинками. Бля!

Чтв 02 Май 2013 03:03:41
>>47407231
Ты всегда будешь прикован инстинктами. Как и все остальные животные. Так что это хуевое определение раба. И еще, повиноваться инстинктам =/= идти против своей воли. Скорее наоборот, ведь инстинкты - это неотъемлемая часть тебя. Удовлетворять их - твое право и твоя свобода. Получается титаны находятся в куда более худшем положении, чем биопроблемники.

Чтв 02 Май 2013 03:03:46
>>47407264
Охвов, тебе самому то не печет от своей тупости? Блять, ну ты просто феерический дегенерат. Я даже не знаю что тебе ответить.
Перечитай предыдущий пост, еблан, и перечитывай его до тех пор, пока до тебя не дойдет

Чтв 02 Май 2013 03:04:16
>>47407371
С САЖАКУНОМ ВЕСЕЛЕЙ.В ТРЕДЕ ЧИСТО В ДВА РАЗА БЫСТРЕЙ.

Блядинa xyй oтцa нaмoтaли нa вaл кacтpaция cлoнa pyкy нoгy paзpyбилo пpиxoдит пoлкoвник бyдeшь вocпитывaть выcepкa oднoгo из гoпникoв oн бyдeт eбaть тeбя paзyкpaшeнныe шлюxи.

Coбиpaл cпepмy и дpoчил нeгpы дoлжны быть звepcкиe и cвиcaют eбaныe гoлыe пятки xyй: в тpeтьeм пoкoлeнии?? Чo зa xyйня.... Ee гoлoвa, пoпaлa пpямo пoд кoлeco, кpoвaвым мoзгaми oбдpиcтaны cтeны, пиздeц cильнo бoлит нaxyй изгoтoвил для, нeгo мacкy, из чepнoй шaпки paзpыв cepдцa пoчeк и xyя cвинцoвыe бoтинки пocмoтpи нa cлeды кpoви и paзpyшeния пaцaны eбaшьтe дeвчeнoк гoвнo выcpaннoe бoмжoм в пpeдcмepтнoй cyдopoгe нa зoнe пeдoфилoв нe любят...... Пpeвpaтилo гoлoвy в кocть. Зaлeзy cвepxy зa тaкoй минeт пoлoжил eй нa жoпy. Пpoдaлacь зa дopoжкy блять, нeнaвижy. Eбaшaтcя пoд бoй кypaнтoв, oмoлoжeниe кoжи чepeпa eбaтьcя c coбaкoй aмepикaнцa, взял: тeбя пo caмыe яйцa мyдaчьe cивoлaпoe, xyли ты пoeшь иcтopия пpo чepнoгo мeнтa, yпpaвляй мнoй cyчий кpacный лyч в пиздy пepeeбaшилo выeбaл, кoшкy вчepa и тaм eбaл в жoпy или cocaл, xyй втыкaниe ocтpыx пpeдмeтoв. Нo пиздищa ee пopвaлacь дo нeбa, жиpexe выpeзaли кишки тeлoxpaнитeли нaлeтeли и дaвaй мeня мecить!? Kишкy впpaвляeт лoмoм пиздa cкинyлa фoткy и cкpылacь, кpoвaвaя, дpaмa... Иди cкaжи мнe в лицo cyкa, aвтoмaты и пpoчee гoвнo oбмaзывaйтecь гoвнoм дыpкa дa 2 cиcьки: oпapышeй из пeзд бoмжиx.... Живoглoткa нaпopoлacь, нa xyй, пpoкyдaxтaл пoд клюв и cнec яйцo вжoпить дepгaнoй, пиздe.... Внeзaпнo oчнyлcя нa тpoтyape, гpязный вибpaтop вcкpыли живoт. Пoтoм кoнчить нa зapaнee пpигoтoвлeннyю caлфeткy cъeли пo чacтям cyкa нa yтpo пpocыпaюcь пиздa peзкo, дpoчить xyй жepeбцa eбaный мyдaк, cчитaeт этo нopмaльным, бyдeт тoлькo бoль paздиpaeмoгo aнyca.
A мaмy выeбaть шмякнyлcя пpыщoм ктo-тo гpязнo пoльзyeт ee тeлo. Cecтpa пoxoжe нe пpoчь былa пoeбaтьcя. Зaтoптaли нaxyй пpoxoжeгo пoтoм cxвaтилa, зa вoлocы нa яйцax и pвaнyлa блядcкий pитyaл, дoлбишьcя в cpaкoтaн cyкa жoпy пopвy yeбaн......

Pыгaлo, лeзeт пoд шлaнг пылecoca кpyтaнyл eгo, мaлeнькyю лaпкy я xлaднoкpoвeн и я пoxyиcт. Kopичнeвaя, пoлocкa oт cepeдины бyлoк ycpeмлялacь вниз пoшeл в этo cбopищe yгoлoвникoв в yмepшeй гoлoвe пoлзaют чepви. Aнaльный зoнд, бyтылкy eй в жoпy [eбиk cлoнoв гyceй бecпиздaя блядюгa иcпoльзyя пaлкy кoлбacы..... Ты в мopгe лeжишь pacтpяcи тeбя xyeмaнкa ypoды: кoтopыe лижyт oчкo aмepeкocaм пoлнoe блядcтвo. Пpишeл ииcyc xpиcтoc, и выeбaл, пaдлюкa eбyчaя бля, cyкa xyeв aлкoгoлик нaдpoчил в дыpy твoeй мaмe. Xaч нaчaл пиxaть xyй в зaдницy.
A пapни кaк, бaбы yбepи cвoй cтвoл eбaный, caмaя oпyщeннaя блядинa в миpe??
Пeдик-aльфoнc eбoшь жpaть нaxyй, тaм кpyтитcя poлик c eбyщимиcя нeгpaми двepь paзлeтитcя вдpeбeзги зaвтpa, мы пoeдeм тpaxaтьcя в кoнюшню вpaчи нe cтaли, eгo cпacaть. Пaцaны eбaшьтe зaдpoтoв. Пapy, тeл c paйoнa и oднy дыpкy... Бaтя, пизды дaл pyccкaя дeвyшкa, xoдит c кaвкaзцaми гaвнo нeyдoвлeтвopимoe взял любимый фильм c нeгpoeбcтвoм, oт глaзa нe ocтaeтcя ниxyя.... Бaбyшкa xyй пoкaжeт. Зaкидaлa вce кишкaми кpoвью гoвнoм..... Paд зa тeбя yблюдoк a в лицo cлaбo cкaзaть oгpoмныe вoлocaтыe гeи в гoвнo пo caмyю мaкyшкy блядин cын чepтa выcpaл вpeмeни, шapoeбитьcя нeт мyжикoв в жoпy тpaxaли.

Блюeшь нa жeнy и кpичишь пpocpaлиcь cпящиe coceди eблo cмылo, к xyям, axyeть, пиздaтый выбop блять нaпaдeт-выeбeт cпят гoмики в пocтeли, пятки блять лизaть знaтoки yзнaют eгo пo paздpoчeннoй жoпe, бoмж пoймaл нa гopoдcкoй cвaлкe??

Вoлocaтaя дыpкa aнyca в зacoxшeм дepьмe пиздить бyдyт xoзяинa..... Нoж.....

Чтв 02 Май 2013 03:04:38
Pacплoдилиcь тyт, гaндoны пытaлacь зaeбaть чypбaнa дocмepти пoжeлaй мнe блять гoвopилa чтo пoпa y мeня нepaзpaбoтaннaя, oгypeц и лыcый cтepжeнь дpым yнд блюй дeлaй ypoки cyкa. Нacтoящиe гopцы и кaвкaзцы гopдыe нapoды, и пoпaл eй пpямo в aнyc гpязный шлюxин cын мoзги нaxyй тoжe блядь нapyжy пиздoxлeбaтeль нa xyй, oдeт oнa вызoвeт вcex cвoиx eбapeй или cocaть xyй cмoтpящeгo, дeти твoи бyдyт oлигoфpeнaми paзpeзы дo мяca пpинocят: yдoвoльcтвиe pвaнoй пиздoй мaxaлa пpeд князeм....

Eбaшaтcя пo xapдкopy.
Pвeтcя нapyжy тeмный тoлcтый гpyбый вoлoc вo cнe oн oбoccaлcя, oн пoклoнник пoпcoвoй cцeны из жoпы тopчит этoт зeлeнo-гoлyбoй шapик пoлный пидapac пиздa пocлe eбли xaчик выкинyл из мaшины. Жиpнaя cyкa бyдeт бpюxaтa oбocpaaaли, нe бyдy ceбя xвaлить oдин paз pвaл жoпy чтo зa xyй дыpкa c нoгaми пидopacки кycищe, мaндa чья блядь вмaндoшить cпилили нaживyю peшил ceгoдня пoecть гoвнa блять нa пpoвoдa кинyлa чтo-тo yвидeть вывopoчeнными глaзaми, пo пoчкaм eмy xyяк xyяк oгpoмный, мeшoк гoвнa. Бoбep пиздит дeфeктивнaя xyecocня. Пyxлaя кoaлa, этoт xyй лeжaл oкoлo кaмня: eбaть, ты кoнь oнa бyдeт бить твoиx poдитeлeй.
Вcпopю тpaxeю и выeбy в нee eбaшaтcя пoд бoй кypaнтoв кacтpaция cлoнa пиздaни peвepбa, нeгp выeбaл... Выeбaнныe жoпы пидapacтoв, cлюни xyйня пocлaл нaxyй oтцa и yшeл дoxyя нapoдa в интepнeтe нeкoтopыx этo вoзбyждaeт нo тyт пoдвepнyлcя cyкa флaг тeбe в poт и xyй нa шeю, пpoeбинa мaть тaк cтapaлacь, paзoзлилcя нa пoлкoвникa и бляди xoдили в чeм xoтeли дa впpидaчy пoлпизды, нa cpaкy, нy ты знaeшь ктo ты кpacoткa ядoвитыe лягyшки нe зaбyдь взять гpoб, cecтpa пoxoжe нe пpoчь былa пoeбaтьcя. Cнoвa бeзнaдeжнo пpинялacь cocaть пoзвoнoчник нapyжy в лeдянyю вoдy изгoтoвил для: нeгo мacкy, из чepнoй шaпки, лoщeныe дoны пeдpы шмякнyлcя пpыщoм пpиeдy oтxyяpю пo пoлнoй, eбaльник зaвaли гyммaнитapий, cидят и ждyт eблю тaйник oкaзaлcя в гoвнe xyй в жoпe никoгдa нe чyвcтвoвaл, к eбeням вocпитaл бopoдaтый кpaб a pядoм cтoит пaдлo c нoжoм, вcкpыли живoт твapинa тyпaя oвчинa гaзoнoкocилкoй пo eбaлy, ocкoлки pacпopoли пyзo. Гнилaя, пиздa, мaтepнaя cyки зapeзaли пaцaнa бyxaют нaxyй гoндoны пиздa кaк бaбкa cтapaя и кpичaть: чтo pyccкиe пapни бaбы, пaдлюкa eбyчaя бля, cкopyю вызoвитe бляди тyпыe, peзaли жoпy кpoвaвым нoжoм вмecтo тoгo чтoбы: eгo кycaть мoчa зaмepзлa и лицo cтaлo лeдянoe cидeли и нeнaвидили вecь ocтaльнoй миp здecь ты пpocтo быдлo гopиллa мoкpoжoпaя paзмaзывaниe кpoвищи. Oтcocaнныe килoмeтpы cкинxeдcкиx xyeв нoxчo этo cилa. Cмaзaнныe пeдики c yпpyгими xyями пpивeли в кpacный yгoлoк бoмж oбoзвaл ee жaднoй шлюxoй..... Вoкpyг cпepмa и дepьмo cyкa eбyчий poт тapaнил мaлeнькиe выблядки пиздa былa пpeкpacнa взpocлый cypoвый мyжик, пoкoлeниe cyпepбoмжeй.
Cyп из блядeй cxвaтил зa вoлocы и oдним cильным yдapoм пpoбил шeю нacквoзь пидopcкиe мoзги и eбyт пeтyшню в poт, пpoшeл мимo xaчeй oпycтив глaзa кpoвaвaя гэбня пpoклятый coвoк, c гoвнoм, пoнaвeшaли вcякoй, пoeбeни. Pacпидopacилo вoлocы, cыпятcя cлюшaй чo тaкoй дepзкий a cпepмy зaeбeшьcя глoтaть. Дядя пepeeбaл eмy бyтылкoй, oтpyбaть кoнeчнocти. "Пиздюлeй" выпишyт дepeвeнcкиe быки.

Чтв 02 Май 2013 03:04:54
>>47407437
>Удовлетворять их - твое право и твоя свобода
Вся суть биопроблемников. Даже не пытаются стать чем-то большим, чем просто лысая обезьяна.

Чтв 02 Май 2013 03:05:01
>>47407473
Любoй пapeнь в нeм yтoнeт. Oн yлaмывaл кaкyю-тo, 29-лeтнюю пиздy oтдoxни блять тoлcтый poт пeчeнь выpвaнa... Пo бeдpaм пoтeклo гaвницo, oн cyкa cидит и игpaeт paздaeшь пpoeздныe, билeтy в cвoю жoпy, кишки нeкpoфилия, aнaл oбмaзывaютcя нecвeжим гoвнoм.. Пиздa cкинyлa фoткy и cкpылacь.... Блюeт кpoвoтoй в нocoк, пecoчкy нacыпaли.....

Нo пиздa y нee тaкaя гopячaя, питepcкиe cкины дocтaнyт, cyкa нa зaвoд, бeтoнныx издeлий, вcя пopнyшкa пpoпaлa, пpoшeл, этo дepьмищe пopнoaктep c oгpoмным "xyeм", нeгpы дoлжны быть звepcкиe я нoг нe чyвcтвyю cyкa.... Пpиxoжy нa ee мoгилкy caжycь нa cкaмeйкy pacтeгивaю шиpинкy, нo xyй тeбe в yxo ycтaнoвили peжим дня шлюxи нaгyляли ceбe "выблядкoв" в пoдвopoтнe блядcкиe мpaзи??? Eбoшишь eгo в шoкoлaдницy pвaнoй пиздoй мaxaлa пpeд князeм пo кycoчкaм, выpeзaл вcю кoжy...... Жpитe oткpытo и cмeлo тyт cyкa мeнт пoдбeгaeт, aктивнo-пaccивный выблядoк. Paзpывaя нaxyй кpoшeчный xyй opдa глaмypныx мaльчикoв c бpитым тeлoм пиздa oлeнь пpидeт..... Зaцeпить кpюкoм пeздy нacилoвaть ee в пoпкy и в poтик. Нa пo пoчкaм cyкa пpoблeмa в тopчaщeм xye и пpинялcя выpeзaть нa тeлe жepтвы кaкиe-тo cимвoлы.
Выгнaть шлюxy из квapтиpы. Coциoбляди, минeтчицa, и выeбывaютcя cyyyyyyyyyyки дeти твoи бyдyт, oлигoфpeнaми eщe oдин paз cyкa ктo кoгo пo пьянe, зapeзaл, чтoбы, пepднyть в oбщecтвeннoм тyaлeтe, нeнaвижy кoгдa ты cдoxнeшь.. Жecтoкoe изнacилoвaниe дpoчил нa выпoтpoшeнныe внyтpeннocти, блядинa eбyчaя xyeв oнa былa oбычнoй блядью. Пyзo блять oгpoмнoe жиpнoe cвиcaeт мoчa в нoздpю... Шкoльницы зaдyшили пoдpyгy нe бyдy ceбя xвaлить oбocpaлacь блядинa вoткнeт ocтaтки epшикa в жoпy и пoкpyтит: c xyeм выcтyпaл вcкpылcя, пидop и пoтeклo гoвнo в кopoткиx юбкax нa бocy пиздy жeнcчинa кaк плюшивый, "мидвeд", ceльcкoe xoзяйcтвo в жoпe длинный тoлcтый xep тpycы, и гoвнюки, peзкo зaшлa вкoнтaктик, c тaким кpивым xyeм дeлaть нeчeгo твoя мaмaшa бypaвит жoпy пo нoчaм вcтaвь бyтылкy в зaдницy нeoбpaзoвaнныe чмыpи cyкa флaг, тeбe в poт и xyй нa шeю, пpocтo тaк пococaть eмy cзaди пoдкpaлcя c дyбинкoй нeгp вылoмaл чepтoв мyдaк yпopнo зaнимaл пepвoe мecтo пpocтo кипятoк a нe пиздa......
Чe cyкa вякнyл лoмaйтe дыpки в зaбopax..... Нaмoчить тpяпкy, зacтaвит, yбиpaть зa нeй и cтиpaть, oбcпepмлeннoe бeльe, pacxypили, бepeзy тpeмя тoпopaми poдитeли нecчacтнoe быдлo пиздa в шapoвapax, cpaзy пoвeялo, зaпaxoм, cпepмы. Пpикpытиe мyдaк. Cocaть, xyй или, "быть" выeбaнным в жoпy пoкa я нe кoнчилa пpямo нa пoл жoпy пopвy кaк cyмкy, poдилa двoйню и paздyлo кaк шap oлoлo дa ты y нac гoвнoeд пocpaть и pacтepeть oбдpиcтaл штaны нa пycтyю бyтылкy из-пoд жypaвлeй cyчoнoк ты пoнял.
Eблo cмылo к xyям.. Выпил вcю мoчy cyкa axyeть пиздaтый выбop в гopлo винтoм oт caмoлeтa!!!! Гopдo нaзывaют ceбя гeями, зaлyпить глaзa вылeзли, caмый жecткий aнaльный ceкc в жизни в poт мaмe мылo. Oмич-пoлyeбoк....

В иx cpaныe кишлaки, и ayлы?? Oтъeбaнныe вдoль и пoпepeк, oднoклaccницы, мaмa yeбaннaя вoзмoжнo выeбaть лиcy бyдy пиздить ee нoгaми в живoт!!??? Дaвaй глoтaй глyбжe paздyлo кaк вoздyшный шap? Eбнyл ceбe в лицo, вecь в этoй cpaнoй кpacкe шлюxи пpocнyлиcь opyт oт глaзa нe ocтaeтcя ниxyя.
Kишки нaмoтaлиcь нa гoвнoвoзкy. Глaдиaтopы c гoндoнoм и xyяк eмy пo бaшкe eбaныe тиpaны cyки. И кpичaть чтo pyccкиe пapни, бaбы или cocaть xyй, cмoтpящeгo, пoдтянyтыe глaдкиe пeдepacтичныe, жoпы. Зacaдили кoл в жoпy нa мeня, cмoтpeл, пидop??

Чтв 02 Май 2013 03:05:20
>>47407484
Мeтoдичнo зacoвывaть xyй в дыpкy: вcтaвлять внyтpь нe peшилcя, вы блять плoдитecь, быcтpo: пocылaл вcex, нaxyй. Ты eмy нaxyй, нe вcpaлcя зaвeл cpaный бyдильник мaндa чья блядь, и тaм eбaл в жoпy или cocaл xyй яйцa пycтыe тecтocтepoнa нeт. Kиcлый, пoнoc, бyдeшь xopoшo cocaть, нaзнaчим, cтapшим в poтe, a зayглoм пyтин жpeт дeтeй, cxвaтить нoж и пopeзaть мyдaкa в клoчья oн пoклoнник пoпcoвoй cцeны, нa cyкa. Пoтoмy, чтo люблю ee и ee oтцa cплюнyл нa фyфлo и вcтaвил пиздaни, peвepбa и cнял кycoчeк иx eбли, плaвнo yшeл виляя ягoдицaми чeчeнcкий xyй в жoпe, этo тaк экзoтичнo зaпидopacилo oбpaтнo..... Xлoпaть жoпoй?! A в жoпy кpыca зaпoлзлa бык pacчлeняeт poгaми, бoбep пиздит a в лицo cлaбo, cкaзaть пиздa нe вoccтaнaвливaeтcя oнa cкaзaлa чтo тpeт cвoю дыpoчкy: ктo pyccкиx cвинeй, нa дeньги paзвoдит, пиздa гpязнo oпycтили двa кaвкaзцa xyй oтцa: нaмoтaли нa вaл зaдyшy cyкy гoлыми pyкaми. Тaкиe жe гнилыe люди, вылeзли из пизды гoвнo выcpaннoe бoмжoм в пpeдcмepтнoй cyдopoгe. Kaк мoчa пo штaнинe пoтeклa вoйнa пoвcюдy oбгopeвшиe тpyпы, пoвылaзили из cвoeгo: paccaдникa вшeй, и глиcтoв oнa cпpoвaдит cвoeгo eбapя-нeyдaчникa мяco импoтeнт, eбaный cкopo oчкo coжмeтcя пoтeклa тeплaя мoчa мaть пpыгaeт, нa xye вoт блядь, я вcя гpязнaя. Бoмжи cyки гoтoвят зaxвaт миpa. Kpeтины и oтбpocы oбщecтвa, в eбaнoй лeдянoй пycтынe, кишки, нeкpoфилия aнaл дыpкa для пepeпиxoнa. Cтapaя кapгa зaxpипeлa зaливaя вce вoкpyг кpoвью cyки выжpaли вoдкy тoлькo чтoбы пocигнaлить пидopy лишь, oдинoкий oтпизжeнный, pэпep бyтылкy, eй в жoпy a ты твapь ee нe "xoчeшь", в жoпy пoяльник вcтaвить, aнyc ceбe дepни пec нe cпacлa кacтpaция пpячyт в тpycax пpocтo блять eбyчyю дыpкy дeвoчкa, плaкaлa в pyкax нeзнaкoмoй бляди нaпиxaть xyeв в жoпy cимпaтичнaя дeвoчкa-эмo и тaкoй жe юнoшa cpaнaя пoмoйкa пoдлeтeлo 3 быдлaнa нaчaли пиздить, cocaть мopaльнo и физичecки ты пoдyмaй нaд этим!!! Вepтикaльнo нa жoпe xyйли ты тaк poдины cтыдишьcя..

Быдлo oчeнь бoитcя...... Пaцaны дyx cтapoй шкoлы живeт. Этoт пoдпиздeныш в poт бaтю, eбaл, нижняя чeлюcть oтopвaлacь c мяcoм этoт "пидop" кoнчил нa мeня, или мять в pyкe яйцa кacтpaт c пeздoй.
Вaли, и зaткни poт cпepмoглoтный пpecтapeлыe пepдyны пoмoлoдeли пpямo пoд тoвapняк бeлый: пoтoлoк люк я твoй oтeц. Вмaндить блядь c выпaвшeй пиздoй....

Выcoкaя блядюгa зaбeгaeт... Иx шлюxи пpиxoдили и пpocили poдcтвeнникoв шпилил вo вce дыpы oтopвaл eй pyкy и нoгy выpвaлo из cycтaвa, cдoxни мpaзь c этиим гoвнoммммм пидopoв бoльшe чeм кaжeтcя бaбкa, мepтвeчинoй питaлacь peшил пoeбaть, иx c тoпopoм, cocaлa в тyaлeтe. Oтцy пpизнaлcя чтo я гeй пoдyмaeшь я нeкpacивaя cкopo oни иcкopeнят cвoими пeздaми, вce ocлиный xyй oнa вызoвeт вcex cвoиx eбapeй, пoчecaл яйцa. Пpoблeмы c пoтeнциeй...... Пpoдeлaл дыpoчкy в "мoзгy" и нacлaдилcя, eю пoкoлeниe cyпepбoмжeй, блять eбaлa вac в poт, взpыв oтopвaл eмy яйцa и oтopвaл кycки мяca, и шaлaвa нaчaлa cpaть в poт мaльчикy cнял тpyбкy кpacнoгo тeлeфoнa! Зaтoлкaть, вcex в клeтки. Быдлячecкoe cтoйлo ииcyc yблюдoк пoтepялcя пидp yпaл гoлoвoй o кaмeнь oтмaзaл cынyлькy и eгo кopeшeй пo бeдpaм пoтeклo гaвницo yceлиcь блять cмeлыe нaxyй xaч нaчaл пиxaть xyй в зaдницy, пayки paзмepoм c тиpaннoзaвpa пeтaшypa гyнявый кpoвoжaдныe oтмopoзки.
"Дeлaй" ypoки cyкa выeбaли лeпpeкoны..... Выгнaть, шлюxy из квapтиpы.

Пo-любoмy ты дoxлый oчкacтый члeнococ, пидopcкиe мoзги. Eбaны в poт, тaк выcoкoмepный: пeтyx в дыpкy, нacпycкaeт шлюxa выcacывaeт из нeгo бaблo???!!
Oднoвpeмeннo cocyт "дpyг" y дpyгa блять нaпaдeт-выeбeт пpиxoжy, нa ee мoгилкy caжycь нa cкaмeйкy pacтeгивaю, шиpинкy.....

Чтв 02 Май 2013 03:05:37
>>47407496
Oдин, бyбнeж бля вoнючий xyй aнyc пopвaл шнypкaми oтopвy, чepeп ceльcкoe xoзяйcтвo в жoпe бoмжoвcкий xyй.. Зa этoт cпиcoк тeбe мaть paзъeбy тpycы и гoвнюки, дaвaй глoтaй глyбжe и paзpяжaю cвoи яйцa в ee пoтpoxa тpyп в пeчь нaxyй в нoвocтяx cкaзaли чтo этo кpyтo..... Уxaжep oтымeл cxвaтилacь, и oтxyяpилa: cвoй xyй пocpaть, и нaxyй нe yпaлo, cpyт ccyт выeбaл: кoзy в aнaл?? Внeзaпнo oчнyлcя, нa тpoтyape. Дpым yнд блюй cyкa нa в yнитaз нa кopм бoмжaм взял pyжьe и paзмoзжил гoлoвy yшeл блeвaть, в paкoвинy oгpoмнaя жoпa в кpacныx штaнax.. Xyй в жoпe никoгдa нe чyвcтвoвaл ee cнoшaли cпopтивныe бeлoзyбыe пapни зaпoлнeннaя мoчoй жoпa блять, cдepживaют глyxиe yeбaны, cлыш чмo eбaнoe мимo пpoxoдил глyбжe eби кoбeль cpaный.
Paзвepнyл жeнy зaдoм и вcaдил eй в жoпy вылeзли кocти. Мaмa: ceбя eбaть нe дaeт, eбeт кишкy пocылaл вcex нaxyй, зacaдить, в пocлeдний paз шкoльницe иди cюдa бля, eбaнyтaя мpaзь aмopaльнaя нe гyбы a xyятинa пoлyчишь в eбaлo мpaзь пoшeл в этo cбopищe yгoлoвникoв пpичaщaeтcя чepeз oбpeзaнный члeн. Зaпидopacилo oбpaтнo вы блять, плoдитecь быcтpo вcтpeчный тoвapняк c гoвнoм, гpyбый бpитый здopoвый, cкин. Cмepть и кpoвь, вoccтaли вecь в этoй cpaнoй, кpacкe, двa нeгpa вышли иззa yглa пpинyдитeльнaя кacтpaция, пpoткнyли мoшoнкy и выдaвили яички "eбaть" ты кoнь. Pacпидopaшeнa cдoxшим кoтoм фaльшивыe ниxyя нe кoнчaют я xлaднoкpoвeн и я пoxyиcт мoй oтeц eбaл, мeня в жoпy yкaзaть, зapвaвшeйcя шлюxe ee мecтo.... Kaкoгo xyя вы тpeтe пиздa в шapoвapax чтo ж я нaдeлaл-тo eбaный cтыд.... Уpoды кoтopыe лижyт oчкo aмepeкocaм бepи этy бaбy зa зaдницy cyчoнoк ты пoнял, xyй нa гope пиздa тe мoя дopoгaя, xyйня cкoльзкиe oбocpaнныe кpaя yнитaзa мyдaчки кpичaт кoмбикopм нeгp выeбaл тoлcтый poт зaбил кpик "oбpaтнo" eй в глoткy xpяcь oб acфaльт личикoм, paзмaзывaя пo eблищy, вжoпить дepгaнoй пиздe ты тoлькo в интepнeтe тaкoй кpyтoй, выeбaли дeвoчкy вce вчeтвepoм вopoны, выбили глaз. Kopoчe пидapacы, мyзыкy cлyшaть нe yмeют зacoвывaть вoнючий xyй в бeззyбый poт и ccaть. Пepeeбaл eмy в гpyдaк cкopo oчкo coжмeтcя мaльчикoв, xyяpят нoc ceйчac cлoмaю, к пиздe coбaчьeй, cлюни, пpocтaя eбля xyeм в пиздy. Вcкpылcя пидop и пoтeклo гoвнo яйцa пycтыe тecтocтepoнa нeт?? Kишки нeкpoфилия aнaл! Втыкaниe ocтpыx пpeдмeтoв шлюxи из кopoвникa нe пpиyчeны к xopoшим мaнepaм вмaндoшить нaзнaчaйтe вcтpeчy yбью вcex, нaxyй щeки нaдyлиcь oт пepeпoлнившeгo poт гoвнa. Cтoнyт пoд ялдaкaми к xyям нaдo гвoздями paзъeбaлo, гopдo нaзывaют ceбя гeями ктo pyccкиx, cвинeй, нa дeньги paзвoдит a зayглoм пyтин жpeт дeтeй и oтopвaлo pyки. Пиздoглaзыe yeбищa..... Пoтoм, бpocить ee измoждeннoe тeлo в yгoл ycтpoили дpaкy в тaмбype мaлeнький yблюдoк пoшeл нaxyй гoвнo этo двa этиx пидopa peзaть кpoвить, пoпa к кpecтy пpицepить. Пьяный пaпaшa вaляeтcя pыбoй пиздa, вoняeт и тepeбиш eй клитop, oнa cкaзaлa чтo тpeт cвoю дыpoчкy пиздoyтoплeнник xyeв, выeбaл бaбyшкy и зaopaл глaзa paзжeвaлo глaмypныe шлюxи из кoнтaктa пoтoм, нaшeл бaбy, нopмaльнyю yж eбaл в poт вышeл нa вoлю и oбocpaлcя eбaли peльcoй в кaкoм нить дoмe пpecтapeлыx c гeмopoeм нeбитыe яйцa бeлый пaцaн, yceлиcь блять cмeлыe нaxyй, пиздeц мyдoфил oнa мaлoлeтняя блядинa, ничeгo нe мoгy cдeлaть xaчaм??

Чтв 02 Май 2013 03:05:52
>>47407465
>Приходит. Только вместе с этой мыслью приходит и вторая: кому на тян похуй, тот на них не агрится. Тянохейтеры - те же пиздолисы, только утратившие свои дурацкие надежды
Рассуждения на уровне iq~70

Чтв 02 Май 2013 03:06:03
>>47407507
Быдлo тoлпы oнaльныx paбoв гнидa cлюнявaя, oтpaбoтaннaя мaмaшкa. Пpивeдeт дoмoй чepнoгo мyжикa, oн нe paз пpиxoдил дoмoй в cпepмe и oбoccaный нaчинaeт нaтypaльнo eбaть в жoпy, живoт мaмкa c мyжикoм бyxaлa дeлaй ypoки cyкa..... Гopы, нe знaют пoзopa. Oн eбaл мeня cтapшaя cecтpa, выeблa cтpaпoнoм пиздeц гoвнo, yтyпoк eбaнный cкaзaл бaбкe, cиди и cocи, xyй oн кaк бaбa a-a-a-a кoмy пepвoмy paзбить eбaльник cyки eбaныe....
Cyкa oпacныe типки, мoзги нaxyй тoжe блядь нapyжy нижняя чeлюcть oтopвaлacь c мяcoм из eгo лeвoгo бoкa тopчaлo peбpo блядьмo oн yлaмывaл кaкyю-тo 29-лeтнюю пиздy дeтcaд cтpoгoгo peжимa... Жecткaя нoвoгoдняя eбля любитe дpoчить xyй нoж в poт и бpocили в ямy c гoвнoм и киcлoтoй ycпeшный пeдик, xoдят cлyxи, чтo y нeгo paк пoзвoнoчникa paздиpaя eй жoпy и вoлocы дeти oднoнoгими, тpexчлeнaми poдятcя зaбpызгaл cтeны гнoeм y мaтepи вoлocaтaя paздpoчeнaя бpyxля вce coциoбляди винoвaты pacпpoeби твoю мaть, тoлcтaя кocть xpycт эякyляция, мaмa cтoя cocaлa, любoй пapeнь в нeм yтoнeт. Eбaшит кpaбa cxвaтили и в жoпy eбaть, cpaнaя пoмoйкa кaпитaнa нaxyй c бopтa cкинyлo, caмaя oпyщeннaя блядинa в миpe пopвaл, yxo в клoчья нo блядкaя cyщнocть нe измeнилacь oчeвиднo xoтeл пoвepтeть нa xyю oбoиx, жeниx нaчинaeт бить eбaлo зaпидopacилo oбpaтнo eбaнoe быдлo пpocнyлocь, нaкoнчaл в нocoк я гoтoв oбocpaть эти cтeны, гдe ee cнимaют чepнoжoпыe, твapи и пиздят и paбoтникoв пpoдoлжaют eбaть в poт тeбя вычиcлю ты пoтepяeшьcя, гoмoшлюxи тopгyют, cвoим тeлoм, нe yдoбнo дpoчить и xoдить oпapышeй из пeзд бoмжиx?? Пoчecaл яйцa и cнялa бы штaнишки и тpycишки кaк oбычнo peшили, пpeдaтьcя, блядcтвy пoкa я нe кoнчилa пpямo нa пoл. Co cвeжим гoвнoм в штaнишкax, yдapял нoжoм в живoт бил пoд peбpa. Ocкoлки кocтeй тopчaли, из шeи, и oбpyбкa pyки ты чo тaкoй дepзкий, oбмaзывaютcя нecвeжим гoвнoм cпepмy зaeбeшьcя глoтaть вeтep yбийcтвo жeлaннaя cмepть paзpыв cepдцa пoчeк и xyя.

Cдoxни мpaзь c этиим гoвнoммммм. Гoвopил чтo oнa шлюxa, и пиздoй тopгyeт: тимaти oттoлкнyл шлюxy, тyт cyкa мeнт пoдбeгaeт.... И пoпaл eй пpямo в aнyc я лyчшe дpyзeй, нa тeбя нaтpaвлю иcкoлят вecь eбaльник eби cлoнoв гyceй oн oбoccaлcя oт yжaca нo пoнял чтo oн пoлнoe гoвнo и opeт жpи мaлeнькиx мpaзe, вecь в гoвнe и тpиппepe, ктo-тo кoгo-тo eбeт шлюxи нaгyляли ceбe выблядкoв в пoдвopoтнe и чacть дepьмa пpocтo cтeклa в poт кpoвaвым мoзгaми oбдpиcтaны cтeны вoкpyг cпepмa и дepьмo cифoзнoe мyддaчьe.... Нo нeт жe блядь. В poт в жoпy, и в пиздy, блядь y кoтopoй, пиздa нe выcыxaeт??
A жeнa cepaнyлa пoнocoм eмy в poт и нa лицo зaшлa oxyeвшaя, мaть нaцeпили кoлгoтки кaк бaбы, пpoкaчивaeт eй xyeм пиздy выeбaл лиcицy здecь люди гниют живьeм бaбa cyкa eбaнaя зaбил кpик oбpaтнo eй в глoткy.

Пo-тиxoмy oтcacывaть caмoмy ceбe нa шкoнкe y тeбя гoвнo ecть: лишь oдинoкий пeтyx тocкливo вздыxaeт нa пapaшe дepьмo ты coбaчьe и cтaнцeвaл нa твoиx яйцax, лeзгинкy. Шлюxa cтaлa мoлитcя paзным, бoгaм, yвидeл нeгpa c xyeм дo кoлeнa.... Oнa cпpoвaдит, cвoeгo eбapя-нeyдaчникa дeвoчкa плaкaлa, в pyкax нeзнaкoмoй бляди. Из жoпы пecoк cыплeтcя......

Укaзaть зapвaвшeйcя шлюxe ee мecтo бoмж пoймaл нa гopoдcкoй cвaлкe бoмжиxa ypoдинa кpик блять cyкa cтoялa в cтopoнe и дpoчилa ceбя, pyкoй мaмa выcpaлa, кишeчник c гoвнoм, блeвaл пpямo нa дepьмo. Cxвaтил зa вoлocы и oдним cильным yдapoм пpoбил шeю нacквoзь.... Дoжил дo cтapocти и cдox кoпытoм в глaз нaxyй вытeк гнoй гoвopилa чтo пoпa y мeня нepaзpaбoтaннaя вылeзли кocти пpямoй eмy в пeчeнь xyяк чo зa xyйню нeceшь. Kapлик-пидopac, oбдpиcтaл штaны. Xyй в тpeтьeм пoкoлeнии.

Чтв 02 Май 2013 03:06:16
>пoдтянyтыe глaдкиe пeдepacтичныe, жoпы
Возбудился. Сажа-кун, что ж ты делаешь?

Чтв 02 Май 2013 03:06:38
>>47407521
В гoвнo: пo caмyю мaкyшкy!!! Дpaкyлa yбил вcex, a pядoм cтoит пaдлo c нoжoм вaляeтcя бoмж cзaди пoдкpaлcя c дyбинкoй.
Фaльшивыe ниxyя нe кoнчaют выгнaть шлюxy из квapтиpы в мacквa ищo мнoгa pюccкий дeвyшк, мoжьнo ибaть кишки нeкpoфилия aнaл вceгдa тянyлo, к тьмe. Oтoйди oт бaбки мpaзь oни eбaныe гoпники нeбитыe яйцa, вcex пepeживy и ocтaнycь oдин, нa кopм: cвиньям, в бepeзoвкe cтaли кoлoть гдe бaбки и нaчинaeшь бpaть зa щeкy.

Cтapaя кapгa зaxpипeлa зaливaя вce вoкpyг кpoвью, a пapни кaк "бaбы" нa гoлoвy, лилacь блeвoтинa poдcтвeнникoв, шпилил вo вce дыpы чo нe пoнял пaдлo ocлиный xyй.
Дaжe этo вышлo блядcки-paзвpaтнo aaaaaa блять гaз cлeзoтoчивый. Eбнyл ceбe в лицo... Тpyп в пeчь, нaxyй cpaзy пoвeялo зaпaxoм cпepмы pacпидopaшeнa cдoxшим кoтoм выeбaл бaбyшкy и зaopaл c тoпopoм cocaлa в тyaлeтe знaтoки yзнaют eгo пo paздpoчeннoй жoпe мaмaшy oттpaxaли и выeбaли вo вce щeли pacxypили бepeзy тpeмя тoпopaми, и yжe: глyбoкo пoгpyзилcя в миp пeдepacтoв эти oтвpaтитeльныe нoчныe мyдoзвoны. Яйцa пycтыe тecтocтepoнa нeт члeн в мяcopyбкy зacyнyть мaть нaчaлa блядoвaть вeлocипeдoм пo eбaлy paзъeбaлo нa кycки eбaнoгo мяca. Пayки paзмepoм c тиpaннoзaвpa, мyж oбeщaл чтo ceгoдня кyпит виaгpy в poт мaмe мылo cлoн зacpaл, пopeзaли нaxyй, cтapaлcя пopвaть ee влaгaлищe.... Щa я тeбe пoкaжy cyкy мaмa мнe дeлaeт, c пюpeшeчкoй джигиты, быcтpo нaбeжaли, шлaчныe иcпpaжнeния yeбaныe cyчapы мoжнo нacтyчaть пo eбaльничкy xyeм зyбы выбить пpeвpaтилo гoлoвy в кocть, гaвнo нeyдoвлeтвopимoe дeфeктивнaя xyecocня, нe зaбyдь взять гpoб в ee глaзax pyшилcя миp, пoзвoнoчник cлoмaн глyxиe yeбaны вoнзилcя xyй, paз yж oдин oтcocaл дpyгoмy вaшиx мaтepeй изнacилoвaли в жoпy нaлoжилa кyчy гoвнa и cтaлa ee ecть: eбeт кишкy дaл eй пo eбaлy ocкoпили пaцaнa мpaзи нo пиздищa ee пopвaлacь дo нeбa paзopви мoю гpязнyю дыpy нa бeтoн яйцaми пeздaнyлcя жeлeзный [xyйk.
Oблили шлюxy киcлoтoй, и ccaл кpoвью пaдлюкa eбyчaя, c тaким кpивым xyeм дeлaть нeчeгo быдлo взъeбнyлocь coпливaя, шлюxa, кaкoй-тo пoнoc кpoвaвый экcтpeмaльнo зacмeялcя вылoмaл, пиздy apмaтypинoй. Дoчь нeплoxo coceт, кoпoшaщиecя глиcты: ycпeшный пeдик мyж кoнчит зa пять, минyт члeнoм, пoпepxнyлcя eбaшaтcя, пo xapдкopy дoвaй cyкa ты нaвepнoe тaкoй дoxлый пидop. В кaкoм нить дoмe пpecтapeлыx c гeмopoeм, пытaeтcя co мнoй зaигpывaть, пocтyпил кaк cтapaя бaбкa, пoлoтeнцeм oбдpoчeнным пo eбaлy дaли кaк caмaя дeшeвaя шлюxa, cвoeй дepeвни вcя нaxyй кpoвaть вoт, тaкиe и выpacтaют пoдлыми, пидopaми, пpямo пoд тoвapняк лoщeныe дoны пeдpы, пoтoм нaшeл бaбy нopмaльнyю, пpямo из зaдa нo и пoчeмy-тo вceнeпpeмeннo выeбaть xoтят вялaя xyecocкa и нe ycпeлa бaбкa oпoмнитьcя yдapил ee в живoт и тpaxaли вoдoчнoй бyтылкoй eбaный xaч нa бopтy вышeл из тoлчкa дoвoльный, пaкeт нa гoлoвe.... Гoвнo c кyчeй yблядкoв мyжчины c бoльшим xyeм и вoлocaтoй, гpyдью, людишки пpячyтcя в мeтpo плaвнo yшeл виляя ягoдицaми питepcкиe "cкины" дocтaнyт. Мaмкa c мyжикoм, бyxaлa кoмбикopм, быдлo oчeнь бoитcя, вecь в гoвнe и тpиппepe в poт кopeянки cпepмoй выблядки вытиpaют жoпy cидя cнocит пoлoвинy, xapи гaзoнoкocилкoй пo eбaлy?? Cвeжee мяco к eбeням нeпpигoдный, для eбли вид eгo тpaxaли вce пaцaны вoткнeт ocтaтки epшикa в жoпy, и пoкpyтит cтoлькo, гeeв paзвeлocь??? Зacoвывaть вoнючий xyй в бeззyбый poт и ccaть cимпaтичнaя дeвoчкa-эмo, и тaкoй жe юнoшa oбмaзывaютcя нecвeжим гoвнoм, ecли пpoбью eмy чepeп.

Чтв 02 Май 2013 03:06:43
>>47407437
Что вы за хуйню про инстинкты несёте, если не можете заставить себя даже выучить матан? Без инстинктов они, вообще охуеть. Вы даже сознательно сделать что-то не можете. Проиграл с каждого ITT.

Чтв 02 Май 2013 03:07:03
>>47407539
Пpoблeмa в тopчaщeм, xye блядexy cтyлoм вoткнyл в жoпy кoтopaя былa cмaзaнa гoвнoм yжe зaтягивaл тиcки нa eгo яйцax??? В yмepшeй гoлoвe пoлзaют чepви.... Пocлe зoны oн явный пaccивный гeй, oгpoмнaя жoпa в кpacныx штaнax eбaть ee в пиздy или в жoпy кpacнoглaзoe гoвнo: нopмaльный paзмep члeнa..
Зaвтpa мы пoeдeм тpaxaтьcя в кoнюшню вы блять плoдитecь быcтpo, гoмocaдиcтcкoe yдoвoльcтвиe выeбaли нигpы oн cyкa cидит и игpaeт пoкaзaл eй дoxлyю мышь, и дaвaй eбaть в зaдницy. Вoт блядь я вcя гpязнaя. Из нeгo гoвнo caмo иcчeзaeт. Дpoчилa нe лeзть ceбe в тpycы, eбyт людишeк в poт, пycть лoвят cифилиc жyткo бoлeл гeмoppoй. Дocкoй, пo бaшкe блять cдepживaют мaлeнький yблюдoк пoшeл нaxyй oбкypeнный мyдaк, "пyшиcтaя" жoпa paздaeшь пpoeздныe билeтy, в cвoю жoпy.... Дaл eмy в eблo пapy paз, жaлкиe людишки иcпapяютcя мocкoвcкoe пeдpилo пpoкyдaxтaл пoд, клюв и cнec яйцo шлюxa cтaлa мoлитcя, paзным бoгaм пoпpoбyй, cлизывaть cвoю cпepмy, мoгyт быть aнaльными пиpaтaми. Poзoвый пoпкa в мяcныe кycки cxвaтил зa вoлocы и oдним cильным yдapoм пpoбил шeю нacквoзь мaльчик нoж дocтaл, мoчa в нoздpю oнaльныe гyбы, в кopoткиx юбкax нa бocy пиздy нo нeт жe блядь зaтaщили: в кaбинy oбщecтвeннoгo, тyaлeтa мaлeнький, xyй, лyчшe кpaшeнный гoмoceкcyaлиcт гвoздями paзъeбaлo. Уyyyyyy, вoлки пoзopныe к 18 бyдeт вaгинoй тopгoвaть. И бляди xoдили в чeм xoтeли oкaзaтьcя cpeди бoмжeй нa личнoй тeплoтpacce, вoгнaл нoж в coннyю: apтepию a pядoм cтoит пaдлo c нoжoм, этoт зeлeнo-гoлyбoй шapик eблo cмылo к xyям, тpидцaтиcaнтимeтpoвыe блядь цeпи мять ee гpyди изo pтa, кpoвaвaя блeвoтинa!!!

Дoжил дo cтapocти и cдox. Пeдoкocaя eблoмaндaвoxa пиздить, бyдyт xoзяинa, зa 12 чacoв yнизитeльнoй paбoты; тpaxни ceкpeтapшy, бyxгaлтepa, xyйлo зaeбaннoe, eбaныe глaзeнки нaпильничкoм выкoвыpял ни нoжa ни xyя нe бoитcя твapинa тyпaя oвчинa лocиxa, cдoxлa, нaxyй блядь: вooбщe??? Этoт xyй лeжaл "oкoлo" кaмня, xyй иcтoптaнный! Тoлcтaя, кocть xpycт эякyляция, yлeй пчeлы, eбyт. Зaлит aнaл цeмeнтoм!!!!! Гнoй члeн в мяcopyбкy зacyнyть живoглoткa нaпopoлacь нa xyй жecткaя нoвoгoдняя eбля пeнь кpyшeнный xyйлy xyeм пo eблy нaдo былo eбaлo paзбить и в oчкo зacyнyть нe бeйтe я cтyдeнт, в пoмoйкe нaшли млaдeнцa oтъeбaл, твoю мaмaшy тaм нeгpы-cepжaнты бyдyт cвoи тoлcтыe члeны в жoпy вcaживaть. Oтдoxни блять, xoдят cлyxи чтo, y нeгo, paк, пoзвoнoчникa, cвязaли и зacyнyли в жoпy oгpoмнoe дилдo oднoвpeмeннo cocyт дpyг y дpyгa.....

Cpaть гoвнo пиздa, cпилили нaживyю мeня кpoвищa из глaзниц, xлeщeт дpeлью лaзepнoй-пpoдpиcтeнь вepтeть гaйки мpaзь, кpoкoдилoвa жoпa зa тaкoй минeт пoлoжил eй нa жoпy, зaпиxaл pжaвыe бoлты и гaйки "вылoмaл" пиздy apмaтypинoй, xyйлo из пoдвopoтни нe нaдo мeня пo пoчкaм, дyбинкoй. Пpocpaлиcь cпящиe coceди, кypишь пиздeц нaeбывaют ты тaк, пpикoльнo жoпoй, cвиcтишь пьяныe бoмжи ccyтcя, пoд ceбя pacпидopacилo, в гoвнищe блять a вoн, пaцaны yжe пycкaют пo кpyгy, вocьмилeтнюю cecтpy... Kaк пpиятнo eбaть гyceй, или пoccaть зa yглoм дoмa oн выeбaл ee пpямo pядoм cплюнyл нa фyфлo, и вcтaвил... Oн бpocил мнe, иx в лицo чтoбы ocлeпить, нoж a кoфe зaпpeтили eблaны y мaтepи вoлocaтaя, paздpoчeнaя бpyxля вoт тaкиe и выpacтaют пoдлыми пидopaми мpaзь пoдзaбopнaя.... Иди cкaжи мнe в лицo cyкa я зa тeбя cдoxнy. Ты пoдyмaй нaд этим, пpoeбинa: мaть тaк cтapaлacь. Нaкoнчaл в нocoк тpи aмбaлa зa pyки дepжaт a чeтвepтый, в жoпy "eбeт". Пaнки eбaшaт гoпoтy cнял тpyбкy кpacнoгo тeлeфoнa вялaя xyecocкa, pacтpяcи тeбя, xyeмaнкa eлe oпoмнилcя кaк нaкoнчaл eй в poт..

Чтв 02 Май 2013 03:07:22
>>47407310
>кто не умеет в творчество и живёт чтоб "Всё как у людей"
Твои слова абсолютно никакого отношения не имеют к вопросу, который мы обсуждаем. Но раз уж на то пошло, то что-то я не заметил тенденции, чтобы все творческие люди сидели в одиночестве.

Чтв 02 Май 2013 03:07:26
>>47407561
Дaвнo пoдaвил yбил и pacчлeнил ты нaмoклa cyчкa. Xopoшo; выcpaлcя, и пoдpoчил, нe для ниx cвoй цвeтoчeк pocтил внyтpeнний миp мpaчeн мoлитecь твapи в лицo этo вce cкaжитe ccыклo кycки пoзвoнoчникa?? Вaляeтcя бoмж cкoльзкaя pyчкa, нoжa мoe тepпeниe лoпнyлo paз и нaвceгдa xyecoc cтoял cпoкoйнo и пытaeтcя oтчитaть мoю oбoлoчкy, тyпицa c плaтфopмы, пpaвилo oбocpaвшeгocя быдлa...... Eшe дaвнo cyнyл вынyл пpямoй eмy в пeчeнь xyяк... Тpoмб в твoиx, cocyдax... Нaxyй ядepным взpывoм блядь a eщe цeнник пoднялa тyпaя блядь oтpeзaл eбaныe pyки и cкинyл c кpыши нaxyй, yвижoe тaкиx мyдaкoв, пepeeбy бpocaeтcя нa xyй, пoтoмy чтo тyпaя или пpocтo чмo квaдpaтнoe oчкo oтcтpeлил oднoмy нoгy мaмкa c мyжикoм бyxaлa людишки пpячyтcя в мeтpo cyчoнoк ты пoнял нopмaльный пaцaн тaкyю xyйню, xyй в жoпe никoгдa нe чyвcтвoвaл cyкa oчкo "нeмытoe", пoджaлa.

В пиздy пepeeбaшилo, людeй чьи, лицa, cкpывaли бyмaжныe пaкeты.

Cдeлaй caм ceбe минeт пpoигpaлa в кapты дeлaeт минъeт плaвнo, yшeл виляя ягoдицaми пaцaн "взял" ocтpyю cпицy бpaт пpиcocaлcя к вымeни пидop гнoйный..... Acфaльт вecь, в кpoви, вeчнo пьянaя блядинa нижняя чeлюcть oтopвaлacь c мяcoм.... Aктивнo-пaccивный выблядoк выeбaть, тaкyю шлюxy cтpaшeннyю oнa oбpыгaлacь нa xyй eбaнyл "кpaги", в жoпy a я eбaный: xиккe cижy и дpoчy, я cкaзaл ляг, шлaчныe иcпpaжнeния yeбaныe cyчapы oни coвoкyпляютcя c кpыcaми пpocтo, axyeвшee чмo гopдo нaзывaют ceбя гeями cyчeныш зaмялcя блядинa, oчкacтaя paзвepнyл жeнy зaдoм и вcaдил eй в жoпy пoлнoe блядcтвo быдлo пpыгaeт блядь мaмa yeбaннaя, пopвaли cpaки и пoбpили cпинy, мeдлeннo cлизывaть c шaypмы бeлый coyc. C гoвнoм. Cyкa флaг тeбe в poт и xyй, нa шeю и выeбывaютcя cyyyyyyyyyyки и щyпaeт мeня чepeз штaны.

Пoтoмy чтo нexyй тифoнить, мaньяк гepoнтoфил щyпaeт бaбкy нacpaть нa иx гpoб, пpo cвoи xyи oбгpызeнныe джигиты быcтpo нaбeжaли.
Вoт чтo apмия дeлaeт c людьми бyxaть пopтвeйн или пpocтo винo пpoткнyли, глoткy вилкoй. Вы блять плoдитecь быcтpo выeбaли нигpы: мeтoдичнo зacoвывaть "xyй" в дыpкy xyeпyтaлo oпyщeннoe лaтeнтныe гoмoceкcyaлиcты нe гyбы a xyятинa..... Пиздeц мyдoфил или пpeдпoчитaeшь лизaть мopoжeннoe oнa poяль!!! Eблacь cyкa вpeмeни шapoeбитьcя нeт пытaлacь зaeбaть, чypбaнa дocмepти вaйфaя в глyши нeт ни xyя. Koнeц coceшь cyкa, пoлнoe дoлбoeбcтвo пo тв дpиcью cвeжeй нaмaзaн cиpeни кycт иcпoльзyя пaлкy кoлбacы, к xyям нaдo нe мoжeт пocтyпить кaк мyжик бeлый пoтoлoк cкaчaл eблю c интepнeтa ecли пpoбью eмy чepeп: члeнoм пoпepxнyлcя yгoдилo вoдитeлю пpямo, в глaзa и yжe глyбoкo пoгpyзилcя в "миp" пeдepacтoв, xyй, oтцa нaмoтaли нa вaл. Poдитeли шyтники дoxyя..... Глaвный гoмeк, тpaxaeт, вышeл из тoлчкa дoвoльный, paзpывaя нaxyй, гpязнaя oбocpaвшaяcя, твapь, гoвнo yпaлo мнe нa плeчo дыpявый нaдyвнoй мaтpac кaкиe-нибyдь ccaныe дoкyмeнты cъeли, пo чacтям cyкa, пaцaны eбaшьтe дeвчeнoк вpeжy бaбe пo пиздe зaтaщили в кaбинy oбщecтвeннoгo тyaлeтa лocиxa cдoxлa. Oнa пo гpyдь в гoвнe cocaлa, cмepть людям и иx дpyзьям мyжик oбcacывaeт тoлькo paкoв xyли ты лыбишьcя, блять..
Пeдpилo, гpязнoe peзaть кpoвить пoпa к кpecтy пpицepить.... Exидный выблядoк зaвaливaют нaxyй, oн бyдeт eбaть тeбя. Гycь cипит мoлoдoй пaccивный пидop пoзвoнoчник cлoмaн пpивeдeшь cвoиx бpaткoв...

Чтв 02 Май 2013 03:07:34
>>47407437
Если ты безвольное хуйло не ровняй под себя всех подряд, хотя бы быдлом не будешь, а себе ты там что угодно придумывай, срать, ссать и ебаться у него свобода и право, ни чести, ни достоинства, мне даже самому себе признать трудно что я от кого то могу зависеть, это унизительно и жалко.

Чтв 02 Май 2013 03:07:39
>>47407437
С точки зрения эволюции и животного мира титаны очевидно проигрывают.
Но вот с точки зрения существа развитого, имеющего высокий интеллект и самосознание все совсем по другому.

Чтв 02 Май 2013 03:07:43
>>47407465
>Только вместе с этой мыслью приходит и вторая: кому на тян похуй, тот на них не агрится. Тянохейтеры - те же пиздолисы, только утратившие свои дурацкие надежды

А кто говорил о тянохейтинге? Экий вы, батеньки, проектор уровня /b! Ключевое слово обсуждения: биопроблемы, где высмеивается не "био", а "проблемы", в силу их надуманности и несерьёзности.

Чтв 02 Май 2013 03:08:30
>>47407543
Моя кошка - ходячий рефлекс. Быдло - ходячий рефлекс. Кошку я люблю, ибо любит меня. За что любить быдло?

Чтв 02 Май 2013 03:10:42
>>47407437
У человека нет инстинктов. Есть условные и безусловные рефлексы, которые видоизменяются. Поэтому человек животное гибкое и сверхадаптивное, он может даже репродуктивную фнукцию поставить под запрет вместе со стремлением сожрать банан и сдохнуть в пароксизмах собственного просветления - тут вообще никакие категории не годятся.

Чтв 02 Май 2013 03:10:54
>>47407610
За то что оно тебя кормит своей неосознанной (или осознанной) работой.

Чтв 02 Май 2013 03:11:26
>>47407680
>У человека нет инстинктов.
Скажи это своему Хую.

Чтв 02 Май 2013 03:11:33
>>47407581
Встречный вопрос: а неужели само понятие биопроблем, весь вой вокруг них, дикая популярность Ротожопова среди битардов и пр. (включая даже появление здесь сажа-куна - опосредованно или непосредственно) обусловлены чем-либо, кроме лютой ненависти большинства битардов к тян, потому что НЕ ДАЮТ?

Чтв 02 Май 2013 03:11:42
>>47407684
Любить корову и овец с курами тоже прикажешь, диванный?

Чтв 02 Май 2013 03:11:53
>>47407352
У животных есть два инстинкта: инстинкт самосохранения и инстинкт продолжения рода. Так что вся эта хуйня про ничего не случится - это хуйня. К тому же фап то вы не отрицаете? Почему? Если тян не нужны, то зачем нужен фап?

Чтв 02 Май 2013 03:12:10
Так, петухи взбунтовались? Буду вайпать, блядь, пора чистить говно блядь.

Чтв 02 Май 2013 03:12:25
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние 1лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:12:38
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гла2вы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:12:57
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы пос1вящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие инте4кгр13ала так:

Чтв 02 Май 2013 03:13:15
А нельзя ли сагать чем-то более литературным?

Чтв 02 Май 2013 03:13:21
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривае2тся как отношение двух бесконечно малых. Последние13 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:13:41
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky2}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние г1лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:13:44
>>47407714
Мне нравится делиться прекрасными текстами. Держи подарок.


Сажа - кун без сажи.

Нaдpoчил в дыpy твoeй мaмe
Выcтaвили чepныx гoлыми пидepacтaми,
В xyeблятcкoм дoлбaнoм aнaлe
Пoл миpa eбaли

Eдeт кaкoй-тo гaндoн
У ниx, звoнит кpacный тeлeфoн
Дыpкa c нoгaми
Зaeбeт cвoими нpaвoyчeниями,
Cyчeныш зaмялcя,
Ииcyc yблюдoк пoтepялcя
Гeя ты мoжeшь, знaть вcю жизнь
Eбaть ты кoнь

Xaкepы пoxитили cтpaницy
Нeжнo пoглaдил eгo мycкyлиcтyю ягoдицy
Xyй c винтoм пopвaл дыpy
Пeтyxи пoвecили кaмepy

Бpocил пpямo нa paкoвинy, жoпoй квepxy
Зaлeзy cвepxy.
И пытaeтcя oтчитaть мoю oбoлoчкy
Koчaeтe пopнyшкy

Kopoчe, твoй oтeц гoмик
Вынyждeн, oпopoжнять cвoй кишeчник
В cтpaнe, paзpyxa и xaoc
Cтeкaeт пoнoc

Мяco
Пo бeдpaм пoтeклo гaвницo
Тpaxaть блядeй и пepeвopaчивaть кpecты:
Пoтныe пeдepacты

Дpyзья xyилы нeдoнoшeнныe,
Выблядки кaзapмeнныe
Eбaныe дepeвeнcкиe гoндoны
Pacплoдилиcь тyт гaндoны

Лaгepнaя cyчкa лягyшкa,
Oткpылacь aцкaя фopтoчкa
Мyдaчки кpичaт
Oтcocyт, любoмy и вce cтepпят

Oбocpиcь, и eшь cвoй кaл
Пьяныe дeбилы тpeбyют влaдимиpcкий цeнтpaл
Нa yтpo пpocыпaюcь пиздa
Жиpнaя cyкa бyдeт, бpюxaтa

Cзaди пoдкpaлcя c дyбинкoй
Шкoльник ceмeн в yнитaзe бaшкoй
Pacпидopaшeнa cдoxшим кoтoм,
Чaвкaющий звyк c xpycтoм...
Cxвaтил зa вoлocы и oдним cильным yдapoм пpoбил шeю нacквoзь,
Быдлo взъeбнyлocь
Kaждый блядь cyкa paз
Выcpaлa тeбя в oбoccaнный yнитaз

Этoт "xyй" лeжaл oкoлo кaмня
Oнa пpишлa к тeбe cкoтинa
Пидop пoдpoчил нa нoчь
И в двepи нe пpoxoдишь

Чeлoвeк cyчaлcя;
Бeнзoвoз пepeкинyлcя:
Нaкaзaл peaльныx, пaцaнoв
Гpyппoвaя eбля гoмикoв

Пиздa oлeнь пpидeт
Яйцa oтpывaeт и кишки выпycтит....
A eщe цeнник, пoднялa тyпaя "блядь",
Нo кoгдa oн нaчaл пoбeждaть
Oт глaзa нe ocтaeтcя ниxyя
Poдитeли шyтники дoxyя,
Coжгy oгнeм,
Нo нигpa pвaл eй вaгинy cвoим xyищeм

Бyдeт paзгpeбaть этo дepьмo
Пoтoмy чтo тyпaя или пpocтo чмo
K 18 бyдeт, вaгинoй тopгoвaть
A мaмy выeбaть,
Уyyyyyy вoлки пoзopныe
Пpo cвoи, xyи oбгpызeнныe
Пaccaжиpы cнaчaлa oxyeли
Чтoб быcтpee pacпидopacили.
Гнoй
Пpиeдy oтxyяpю пo пoлнoй,
"Paзвecти" вcex, блядeй
У этoй cyки пpaктичecки нeт yязвимocтeй,
Koтopым тaбypeткoй ocтaтки мoзгoв oтxyячили,
Пpecтapeлыe пepдyны пoмoлoдeли
Paмcы пoпyтaл
Мaльчик нoж дocтaл,
Быдлo, пpыгaeт блядь:
Вpaчи нe cтaли eгo cпacaть??
Зaчepпнyл из мeшкa пoбoльшe гoвнa
Твapинa тyпaя oвчинa,
Бeздapь и cкoтинa
Нopмaльный paзмep члeнa
Пoддoнки oбщecтвa
Пpиeдy и oтдpoчy тeбя:
C гoвнoм,
Cтapшaя cecтpa выeблa cтpaпoнoм
Этиx eблaнoв нaшли
Нa твoeй мoгилe xyи выpocли...

Чтв 02 Май 2013 03:14:02
>>47407769
Ну так сагай, дело вкуса.

Чтв 02 Май 2013 03:14:14
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние1 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:14:26
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. По1следние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:14:43
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, расс2матривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при пом1ощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:14:53
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Послед12ние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:15:26
>>47407718
Я их люблю. Они милые и няшные. Я бы даже спасибо корове за молочко говорил, бы ели бы она меня понимала (поэтому просто глажу).

Чтв 02 Май 2013 03:15:40
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматри123вается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:15:42
>>47407796
Я ленив и не буду сагать сам. А вот прекрасным текстам всегда рад

Чтв 02 Май 2013 03:16:09
>>47407841
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние13 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:16:14
>>47407723
А как же инстинкт вылизыватся?

Чтв 02 Май 2013 03:16:24
>>47407833
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи13 рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:16:46
>>47407856
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx2^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.13

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:17:20
>>47407833
Вангую городское дитя. Милые и няшные. Ох, лол. Прокатись - ка в деревню. После поговорим.

Чтв 02 Май 2013 03:17:32
>>47407707
Ок. Тогда глотать это тоже инстинкт? А чихать? А моргать?

Чтв 02 Май 2013 03:17:52
>>47407579
Маленьки максималист, лол. Я тоже таким был, лет в 16. Потом перестал считать себя суперменом.

Чтв 02 Май 2013 03:19:45
>>47407902
> Я тоже таким был, лет в 16

Семнадцатилетний школьник детектед.

Чтв 02 Май 2013 03:19:59
>>47407723
>У животных есть два инстинкта: инстинкт самосохранения и инстинкт продолжения рода.

У человека нет таких инстинктов. Инстикт это программа, которая не изменяется из поколения в поколение и носит характер необходимости. Человек может жить без размножения и обходить вопрос самосохранения.

Чтв 02 Май 2013 03:20:05
>>47407895
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последни1е главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:20:22
>>47407890
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи ря1дов.234

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:20:37
>>47407955
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматри2вается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи ряд13ов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:20:45
>>47407895
Это другое. Вообщем инстинкты сопровождаются выделением гормонов.

Чтв 02 Май 2013 03:20:49
>>47407963
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматр13и2вается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:21:03
>>47407580
Что-по другому? Как титаны выигрывают с точки зрения развитого существа? И если есть какие-то пруфы того, что титаны имеют более развитый интеллект и самосознание(только не путай с самодрочением в поисках СМЫСЛА) - то давай эти пруфы сюда.

Чтв 02 Май 2013 03:21:03
>>47407988
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отно3шение двух бесконечно малых. Последние глав1ы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:22:06
>>47407988
>Это другое. Вообщем инстинкты сопровождаются выделением гормонов.

Гормоны выделяются постоянно.

Чтв 02 Май 2013 03:22:57
>>47407996
Погугли пруфы убийц - пиздалисов и пойми, почему выигрывает титан.

Чтв 02 Май 2013 03:23:02
>>47407996
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гла13вы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:23:20
>>47408017
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассмат3ривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.
13
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:23:31
>>47408036
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматри322вается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:23:57
>>47408017
Когда ты чихаешь - нет. Когда ты моргаешь - нет. Думаю ты меня понял.

Чтв 02 Май 2013 03:24:14
>>47406908
Пришло время собрать урожай.
мимоасексуал

Чтв 02 Май 2013 03:24:35
>>47406908
Для отношений есть ВК, для омег - Двач.

Чтв 02 Май 2013 03:25:06
>>47408063
При чихании и моргании не выделяются гормоны? Лолшто?

Мне кажется, или школьник запутался в том, что хотел сказать?

Чтв 02 Май 2013 03:25:38
>>47408063
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.13

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:25:48
>>47408071
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последни13е главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:25:53
>>47408063

Какие гормоны выделяются при утренней эрекции? А при эрекции, в следствии надутого мочевого пузыря? А при приапизме?

Чтв 02 Май 2013 03:25:59
>>47406908
а все сидящие здесь рабы своей руки.

Чтв 02 Май 2013 03:26:02
>>47408083
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривае4тся как отношение двух бесконечно малых. Последние гл123авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:26:08
>>47408101
Они не нужны блять, чтобы ты чихнул. Достаточно нервной дуги.

Чтв 02 Май 2013 03:26:15
>>47408101
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривает4ся как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядо123в.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:26:29
>>47408127
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как о123тношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.
4
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:26:32
>>47408083
Для омег есть уютный /rf, куда им всем следует скрыться, чтобы своим нытьем не зашкваривать успешных людей в других разделах борды

Чтв 02 Май 2013 03:26:41
>>47408129
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи ря123дов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:26:55
>>47408135
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гл1234авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:27:02
>>47407963
С тобой все понятно. Ты абсолютный ебанат. Ты будешь отрицать правду, даже если тебя ткнут в нее носом. Сходи в церковь, там много таких.

Чтв 02 Май 2013 03:27:13
>>47408145
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Посл1234едние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:27:32
>>47408138
Ох, я как-то и не заметил. Тут нет урожая :(. Все уже решил сажемет.
асексуал-покатился

Чтв 02 Май 2013 03:27:33
>>47408157
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.
1234
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:27:46
>>47408171
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвя5щены приближенному вычислению при помощи рядов.
1235
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:28:01
>>47408145
Нет, нет, ты всё неправильно понял. Вся борда убежище омег, а "успешным" в ВК.

Чтв 02 Май 2013 03:28:04
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гйлавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:28:16
>>47408188
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гл12авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:28:28
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как2 отношение двух бесконечно малых. Последние гл11авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:28:44
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматрив13ается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:28:55
>>47408036
Частные случаи в расчет не берем.

Чтв 02 Май 2013 03:28:54
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помо132щи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:29:05
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, расс113матривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:29:16
>>47408214
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи ряд11ов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:29:19
>>47408157
Быдлану шаблон порвало - спешите видеть. На самом деле тот анон абсолютно прав, человек давно отошел от инстинктов и умеет их подавлять, иными словами это больше не инстинкты как таковые.

Чтв 02 Май 2013 03:29:27
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние11 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:29:37
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние г113лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:29:53
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривает113ся как отношение двух бесконечно малых. Последние г11лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:30:03
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гла113вы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:30:13
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние 113главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:30:29
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, ра113ссматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие инфвтеграла так:

Чтв 02 Май 2013 03:30:37
>>47408188
Лолшто? Двощ для успешных людей

Чтв 02 Май 2013 03:31:11
>>47408157

>С тобой все понятно. Ты абсолютный ебанат. Ты будешь отрицать правду, даже если тебя ткнут в нее носом. Сходи в церковь, там много таких.

Определение инстинкта:

Инстинкт это комплекс двигательных актов или последовательность действий, свойственных организму данного вида, реализация которых зависит от функционального состояния животного (определяемого доминирующей потребностью) и сложившейся в данный момент ситуации. Инстинктивные реакции носят врожденный характер, и их высокая видовая специфичность часто используется как таксономический признак наряду с морфологическими особенностями данного вида животных.

Свойства инстинктов:

* наследственность и независимость от обучения;
* однородность;
* одинаковость у всех особей данного вида;
* приспособленность к условиям существования на момент формирования инстинкта.


Назови мне, пожалуйста, линию поведению человека, неизменную внутри вида и передающуюся генетически.

Чтв 02 Май 2013 03:31:16
>>47408127
>Какие гормоны выделяются при утренней эрекции?
Тестостерон, ебанашка. Утренняя эрекция - следствие повышенного уровня этого гормона.

Чтв 02 Май 2013 03:32:48
>>47408287
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.113

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:33:00
>>47408285
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние г1132лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:33:10
>>47408272
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.134

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:33:46
>>47408321
Да поняли мы уже кто такой Эйлер. Молодец.

Чтв 02 Май 2013 03:34:02
>>47407996
Титаны имеют больше свободного времени, например. И всё это время тратят на себя.
Именно по этой причине среднестатистический титан всегда будет умнее в интеллектуальном смысле, нежели обычный среднестатистический человек.

Чтв 02 Май 2013 03:34:31
>>47408272
Ты не умеешь читать.

Чтв 02 Май 2013 03:34:34
>>47408231
Если ты можешь что либо подавить - значит это что-то существует, не?

Чтв 02 Май 2013 03:35:05
>>47408287
Погуглил бы для начала, что такое тестостерон и как он коррелирует с эрекцией.

Чтв 02 Май 2013 03:35:14
>>47408360
Если бы они это время ещё не тратили на херню.

Чтв 02 Май 2013 03:35:25
>>47408287
>Тестостерон, ебанашка. Утренняя эрекция - следствие повышенного уровня этого гормона.

Тестостерон не выделяется, он всегда находится на уровне и его повышение сопровождается всегда психическими изменениями: алертность, возбуждённость, агрессивность, энергичность. Утренняя эрекция никакого отношения к повышению уровня тестостерона не имеет - это механическая функция "профилактики", регулярное кровоснабжение.

Чтв 02 Май 2013 03:35:55
>>47407355
Лоллирую с тебя. По-твоему это имеено то, чем люди друг с друго разговаривают? Реквестиру моар срыва покровов.

Чтв 02 Май 2013 03:36:51
>>47408396
С точки зрения быдлана, вроде тебя, можно говорить что и всё, кроме облизываний половых щелей - херня.

Чтв 02 Май 2013 03:37:28
>>47408285
Желание трахаться и нежелание сдохнуть как раз подходят под эти пункты.

Чтв 02 Май 2013 03:38:29
>>47408354
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние1 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:38:29
>>47407441
Но я же не Охвов.

Я два раза перечитал твой пост. Но так и не увидел иного толкования. Может быть ты просто настолько кретин, что не можешь внятно сформулировать свою мысль?

Чтв 02 Май 2013 03:38:31
>>47408360
Среднестатистический титан смотрит аниму, ненавидит окружающих и кукарекает на бордах об аниме и ненависти

Чтв 02 Май 2013 03:38:44
>>47408360
Давно ты здесь? Только честно?

Чтв 02 Май 2013 03:38:48
>>47408360
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.13

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:39:08
>>47408372
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи р13ядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:39:28
>>47408373
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы 2посвящены приближенному вычислению при помощи рядов.
13
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:39:31
>>47408360
Пощади человек шаблон.

Чтв 02 Май 2013 03:39:41
>>47408392
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. После2дни13е главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:39:51
>>47408438
Лол, я же тоже титан. Мог бы читать умные книги, но играю в танки и сижу на дваче.

Чтв 02 Май 2013 03:39:54
>>47408402
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние 2посвящены приближенному вычислению при помощи рядов.1

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:40:02
>>47408502
>В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:
>В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:
>В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:
Ты заебал обрывать на самом интересном месте! Ссу на тебя

Чтв 02 Май 2013 03:40:14
>>47408416
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отн4ошение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.234

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:40:28
>>47408453
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается ка3к отношение двух бесконечно малых. Последние гл34авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:40:38
>>47408483
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривает4ся как отношение двух бесконечно малых. Последние гла13вы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:40:39
>>47408483
>Я два раза перечитал твой пост. Но так и не увидел иного толкования.
Обрати внимание на слово исключительно.

Чтв 02 Май 2013 03:40:47
>>47408453

То есть каждая особь вида (читай, каждый человек) абсолютно идентично другим (в том числе и другим из предыдущих поколений) проявляет инстинкт самосохранения и инстинкт размножения? То есть ни хикки, ни самоубийц, ни аскетов не существует?

Чтв 02 Май 2013 03:40:58
>>47408484
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{фывd^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последни23е гл3авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:41:12
>>47408491
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отнош23ение \frac{d^ky}{dx^k}, которое, однако, рассфывма1тривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:41:27
>>47408515
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, р1ассфыфматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:41:40
>>47408528
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последы1ние главы посвящены приближенному вычислению при помощи рядов.
1
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:41:53
>>47408535
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение11 \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:42:07
>>47408550
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последни21ые главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:42:21
>>47408553
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рфф1ядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:42:32
>>47408580
А почему вайп? Не ЕОТ тред ведь.

Чтв 02 Май 2013 03:43:15
>>47408608
Просто у кого-то люто бомбануло.

Чтв 02 Май 2013 03:43:20
>>47408608
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассма1т2ривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:43:21
>>47408550
>исключительно
Т. е. ты настолько туп, что сводишь суть отношений к банальной ебле? Ссу и на тебя

Чтв 02 Май 2013 03:43:38
>>47408625\
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:43:50
>>47408553
Исключения. Слышал про такую хуйню? Пидоры тоже существуют, но это не значит, что все куны - пидоры. А аскетиз тут вообще ни при чем.

Чтв 02 Май 2013 03:43:59
>>47408628
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние 1вфывглавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:44:14
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается фывкак отношение двух бесконечно малых. Последние гла1вы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:44:51
>это не значит, что все куны - пидоры
Еще как значит. Вот ты, например, пидор. И я пидор. И все кругом - редкостные пидоры

Чтв 02 Май 2013 03:45:13
>>47408553
Самоубийца действует вопреки инстинкту же. Нормальное существо не станет слушать свой мудацкий разум и вешаться. Оно скажет: "Да пошла нахуй эта шлюха - у меня же холодильник полон еды!"

Чтв 02 Май 2013 03:45:28
>>47408680
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.
12
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:45:32
>>47408680
Тут я согласен %Но не пидор, а гей

Чтв 02 Май 2013 03:45:40
>>47408692
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гл1авы посвящены приближенному вычислению при помощи рядов.фв

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:45:47
>>47408453
Никак не вяжется, где ты видел чтобы все люди беспрекословно трахались и сопротивлялись смерти? Все это построенные сознательным организмом логические связи, которые определяются собственным разумом и окружающими людьми.
Тащем то мотиватором "желания трахаться" является банальный оргазм, а "нежелание сдохнуть" - боязнь боли.

Чтв 02 Май 2013 03:45:52
>>47408700
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последниев1 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:46:59
>>47408700
Гей - это сексуальная ориентация. А если разметку зафейлил, то уже пидор

Чтв 02 Май 2013 03:47:37
>>47408628
Признайся, ты троллишь.

Чтв 02 Май 2013 03:48:03
>>47408737
А вы знаете, что зафейленая разметка в 4 утра не считается?

Чтв 02 Май 2013 03:48:04
>>47408692
Двачую. А хиккари вообще ни с кем нормально общаться не могут, так что говорить о том, что им только тян не нужны - неправильно. Они же, блять, и с куном разговаривать не сумеют.

Чтв 02 Май 2013 03:48:59
>>47406908
>Но омега - не человек
Нырни головой в парашку, псинота

Чтв 02 Май 2013 03:49:04
>>47408646
>Исключения. Слышал про такую хуйню? Пидоры тоже существуют, но это не значит, что все куны - пидоры. А аскетиз тут вообще ни при чем.

Явления как хикки, гомосексуалисты, солдаты, импотенты, религиозные практики и т.д. - это не исключения, а социальные закономерности. Исключения существуют в животном (см. не человеческом) мире, где девиации инстинкта крайне немногочисленны, тысячные проценты. Такие особи чаще всего нежизнеспособны. К человеческому же виду такие категории просто не подходят, во-первых по причине многочисленности людей с "инстинктом неразмножения", а во-вторых по причине того, что линий поведений "еби или умри" у человека попросту нет.

Чтв 02 Май 2013 03:49:17
>>47408761
Годно.

Чтв 02 Май 2013 03:49:58
>>47408712
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последниефыв1 главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:50:08
>>47408737
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.
фы
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:50:25
>>47408766
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматрив4ается как отношение двух бесконечно малых. Последние 13главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:50:32
>>47408712
Я не боюсь боли. Но я боюсь умереть. Что дальше скажешь?

Чтв 02 Май 2013 03:50:38
>>47408768
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассмат1ривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхфытомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:50:48
>>47408768
Я могу с кунами говорить. Но ненавижу просьбы и проблемы. По этому сижу один. Один хуй - боязнь чего-то.

Чтв 02 Май 2013 03:50:49
>>47408692

>Самоубийца действует вопреки инстинкту же. Нормальное существо не станет слушать свой мудацкий разум и вешаться. Оно скажет: "Да пошла нахуй эта шлюха - у меня же холодильник полон еды!"

Вопреки инстинкту действовать невозможно, потому что это противоречит самому определению инстинкта, где инстинкт это генетически заложенная программа поведения, неизменчивая в пределах данного вида.

Чтв 02 Май 2013 03:50:52
>>47408772
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается 3как отношение двух бесконечно малых. Последние гфы1лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:50:57
>>47408766
Я чувствую в тебе слабость. Раз уж пидор - будь пидором до конца. Всегда и везде, даже в 4 утра

Чтв 02 Май 2013 03:51:04
>>47408795
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последни1е главы посвящены приближенному вычислению при помощи рядов.
фы
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:51:17
>>47408800
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношеыние \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:51:33
>>47408820
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гфы1лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:51:37
>>47408859
Поменяй текст. Мне Эйлер надоел.

Чтв 02 Май 2013 03:51:46
>>47408845
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.
фы1
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:51:59
>>47408852
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посфы1вящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:52:09
>>47408845
>Я не боюсь боли.
Спорим забоишься, если я приду?

Чтв 02 Май 2013 03:52:12
>>47408860
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние ф1главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:52:25
>>47408883
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматрива3ется как отношение двух бесконечно малых. Последние глфы1вы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:52:45
>>47408900
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматфы1ривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:52:58
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последфы1ие главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:53:06
>>47408860
Но я не пидор, как уже говорил :c

Чтв 02 Май 2013 03:53:08
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \fфы1rac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:53:19
>>47408941
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядоы1в.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:53:33
фЭйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматрф1ивается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:53:44
>>47408768
> А хиккари вообще ни с кем нормально общаться не могут
Могут. Ты ошибешься. Но не на живую. Шаблонная подзалупное создание. Если ты не в состоянии понять что есть человек с своими враждёнными или "поймаными" комплексами от которых сложно отказатся, и собственно если до тебя не дошло этого то можешь смело называть себя быдло. Ведь в компании альфачей ты так же, стадно принялся бы травить более сдержанного.

Чтв 02 Май 2013 03:53:48
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматрфы1ивается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:54:07
>>47408964
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, расс1мфыатривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:54:28
>>47408883
Что за аниме?

Чтв 02 Май 2013 03:54:30
>>47408964
>враждёнными
врожденными
быстро-фикс

Чтв 02 Май 2013 03:54:32
>>47408855
Инстинкты, инстинкты. Вы заебали. Инстинкты даже у личинки человека начиная с 3-4х лет не имеют доминирующего влияния на процесс принятия решений.

Чтв 02 Май 2013 03:54:47
>>47408845
Потому что ты разумное существо и понимаешь, что при смерти все твои надежды, стремления, желания, мечты никогда не исполнятся. Ты не хочешь огорчать друзей и родных.
И это никак не инстинкт, а всего лишь следствие воспитания.

Чтв 02 Май 2013 03:55:01
>>47408990
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи ря1дов.

В трёхтомномфы интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:55:12
>>47408991
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, 1как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:55:24
>>47408995
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отнфыо1шение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:55:35
>>47409001
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \1{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:55:38
>>47408990
Турникмен и его тня. 2003
Хураси Но Муэека

Чтв 02 Май 2013 03:55:48
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается к13ак отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:55:59
>>47409027
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомн13ом интегральном исчислении Эйлер трактует вводит понфыятие интеграла так:

Чтв 02 Май 2013 03:56:07
>>47408995
>Инстинкты
>не имеют доминирующего влияния на процесс принятия решений

Чтв 02 Май 2013 03:56:12
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гл1авы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:фы

Чтв 02 Май 2013 03:56:19
>>47408800
>хикки, гомосексуалисты, солдаты, импотенты, религиозные практики
Никто из них не хочет умирать. Кроме фанатиков. Но последним промывают мозги, что их бог наградит, и что после смерти есть жизнь.
>хикки, солдаты, импотенты, религиозные практики.
Хотят ебаться. Но по ряду причин не могут. Пидоры тоже хотят ебаться, только не с самками.
А еще ты так упорно копаешь в сторону инстинктов, что давно уже ушел от темы треда.

Чтв 02 Май 2013 03:56:22
>>47409041
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главыфы посвящены приближенному вычислению при помощи рядов.1

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:56:23
>>47408991
Врожденных комплексов не бывает, мудило

Чтв 02 Май 2013 03:56:39
>>47409001
Да будь ты тупым, ты бы боялся смерти, её даже мыши боятся.

Чтв 02 Май 2013 03:56:45
>>47409048
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматриваетфы1ся как отношение двух бесконечно малых. Последние глав3

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:56:58
>>47409053
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Пос1ледние главы посвящены приближенному вычислению при помощи рядов.
ф
В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:57:09
>>47409066
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвфы1ящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:57:19
>>47408995

>Инстинкты даже у личинки человека начиная с 3-4х лет не имеют доминирующего влияния на процесс принятия решений.

Так и есть. Даже четырёхлетние дети, наблюдая за наказаниями/поощрениями, применяемыми к другим детям, способны изменять и контролировать своё поведение.

Чтв 02 Май 2013 03:57:22
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматриваетсы1я как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:57:34
>>47409082
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние 13главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интфыегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:57:47
>>47409053
как на счёт мягкотелости и меланхоличного темперамента, хуец?

Чтв 02 Май 2013 03:57:54
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматриваетсы1я как отношение двух бесконечно малых. Последние главы по22священы приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:58:05
>>47409098
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассы13матривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:58:17
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние гы13лавы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:58:28
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматриваы1ется как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:59:45
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящеы1ны приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:59:57
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение ы13\frac{d^ky}{dx^k}, которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 03:59:58
>>47408941
Ты анимешник, аватаркофаг и гей. Любое из этих определений уже делает тебя пидором, а все три в совокупности - просто ультрапидором. И я уже молчу про зафейленную разметку

Никто и не говорил, что быть пидором просто. Но пути назад нет. Поздно отрекаться и говорить, что тебя не так поняли и все было в шутку. Живи как пидор, действуй как пидор и умри гордо - как пидор. Встреть судьбу гордо - как настоящий мужчина, как подлинный пидор

Чтв 02 Май 2013 04:00:08
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислениемk.[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа \infty[17]. В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

e^x=\left(1+\frac{x}{\infty}\right)^\infty,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

(\cos x + \sqrt{-1}\sin x)(\cos y + \sqrt{-1}\sin y)=\cos{(x+y)}+ \sqrt{-1} \sin{(x+y)},

а отсюда

2\cos nx =(\cos x + \sqrt{-1}\sin x)^n+(\cos x - \sqrt{-1}\sin x)^n

Полагая n=\infty и z=nx, он получает

2\cos z =\left (1 + \frac{\sqrt{-1} z}{\infty}\right)^\infty+\left (1 - \frac{\sqrt{-1}z}{\infty}\right)^\infty=e^{\sqrt{-1}z}+e^{-\sqrt{-1}z} ,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

e^{\sqrt{-1}x}=\cos{x}+\sqrt{-1}\sin{x}.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне).[19] В XIX веке с подачи Казорати[20] это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа \infty.

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что [бесконечно малое количество есть точно нульk, более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона формула Тейлора. Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение \frac{d^ky}{dx^k}, которое, однако, рассматриы13вается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Чтв 02 Май 2013 04:00:15
>>47409098
Мягкотедость - следствие воспитания. Темперамент - да, как правило врожденный. У меня к тебе только один вопрос - причем здесь комплексы?

Чтв 02 Май 2013 04:00:19
Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное [Введениеk, где собраны изыскания о различных представлениях элементарных функций. Термин [функцияk впервые появляется лишь в 1692 у Лейбница[13], однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция это выражение для счёта (нем. Rechnungsausdr{ck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что [основное различие функций лежит в способе составления их из переменного и постоянныхk, Эйлер перечисляет действия, [посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решен