Карта сайта

Это автоматически сохраненная страница от 18.06.2013. Оригинал был здесь: http://2ch.hk/b/res/50081521.html
Сайт a2ch.ru не связан с авторами и содержимым страницы
жалоба / abuse: admin@a2ch.ru

Втр 18 Июн 2013 18:08:08
Антуаны, я ублюдок
Ублюдок-кун в треде.
Мои злодеяния:
1. Однажды взломал аську друга и увел его тян.
2. Давал ложные показания в суде и челу дали статью.
3. Трахнул девственницу и бросил.
4. Пизжу про друзей за спиной. К примеру, вчера с ним гулял, а сегодня всем рассказываю, какой же он мудак.
5. Взял телефон брата и начал с его номера всем названивать и кричать, что хочу ебаться
Если вспомню, еще расскажу. А вы какие злодеяния совершали и совершаете?


Втр 18 Июн 2013 18:09:27
>>50081521
Бамп

Втр 18 Июн 2013 18:11:08
>>50081521
Сажи вниманиеблядку

Втр 18 Июн 2013 18:11:26
>>50081636
Хуйня.

Втр 18 Июн 2013 18:11:43
>>50081701
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:11:46
>>50081636
Да ты совсем не человек, ты зверь, нахуй!

не моралофаг

Втр 18 Июн 2013 18:11:57
>>50081725
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:12:10
>>50081749
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:12:22
>>50081779
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:12:29
>>50081521
Вайпал Сабатонотред вручную.
Собственно, всё ещё вайпаю.

Втр 18 Июн 2013 18:12:33
>>50081789
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:12:53
>>50081796
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:13:09
>>50081824
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:13:25
>>50081847
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:13:48
>>50081863
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:13:50
>>50081521
бампец

Втр 18 Июн 2013 18:14:02
>>50081890
Закон Бо±йля Марио±тта один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона[1].

Закон Бойля Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

pV=\mathrm{const},

где p давление газа; V объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Втр 18 Июн 2013 18:14:20
>>50081636
Мудак.

Втр 18 Июн 2013 18:14:21
>>50081888
Ну вот нахуя такое делать, уебак?

Втр 18 Июн 2013 18:14:54
>>50081908
В случае постоянной массы газа уравнение можно записать в виде:

\frac{p\cdot V}{T}=\nu\cdot R,
\frac{p\cdot V}{T}=\mathrm{const}.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля Мариотта, Шарля и Гей-Люссака:

T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.
p=\mathrm{const}\Rightarrow\frac{V}{T}=\mathrm{const} Закон Гей-Люссака.
V=\mathrm{const}\Rightarrow\frac{p}{T}=\mathrm{const} закон Шарля (второй закон Гей-Люссака, 1808 г.)

А в форме пропорции \frac{p_1\cdot V_1}{T_1}= \frac{p_2\cdot V_2}{T_2} этот закон удобен для расчёта перевода газа из одного состояния в другое.

С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

\,\mathrm{H}_2+\mathrm{Cl}_2=2\mathrm{HCl}.

1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

\,\mathrm{N}_2+3\mathrm{H}_2=2\mathrm{NH}_3.
T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.

Закон Бойля Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (16271691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (16201684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p=(\gamma-1)\rho\varepsilon,

где \,\gamma показатель адиабаты, \,\varepsilon внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение \,P\cdot V немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение \,P\cdot V увеличивается.

Втр 18 Июн 2013 18:15:09
>>50081934
В случае постоянной массы газа уравнение можно записать в виде:

\frac{p\cdot V}{T}=\nu\cdot R,
\frac{p\cdot V}{T}=\mathrm{const}.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля Мариотта, Шарля и Гей-Люссака:

T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.
p=\mathrm{const}\Rightarrow\frac{V}{T}=\mathrm{const} Закон Гей-Люссака.
V=\mathrm{const}\Rightarrow\frac{p}{T}=\mathrm{const} закон Шарля (второй закон Гей-Люссака, 1808 г.)

А в форме пропорции \frac{p_1\cdot V_1}{T_1}= \frac{p_2\cdot V_2}{T_2} этот закон удобен для расчёта перевода газа из одного состояния в другое.

С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

\,\mathrm{H}_2+\mathrm{Cl}_2=2\mathrm{HCl}.

1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

\,\mathrm{N}_2+3\mathrm{H}_2=2\mathrm{NH}_3.
T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.

Закон Бойля Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (16271691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (16201684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p=(\gamma-1)\rho\varepsilon,

где \,\gamma показатель адиабаты, \,\varepsilon внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение \,P\cdot V немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение \,P\cdot V увеличивается.

Втр 18 Июн 2013 18:15:19
>>50081934
Ты что, не видишь, что он злодей? ОП-пост - говно, потому что.

Втр 18 Июн 2013 18:15:22
>>50081926
В случае постоянной массы газа уравнение можно записать в виде:

\frac{p\cdot V}{T}=\nu\cdot R,
\frac{p\cdot V}{T}=\mathrm{const}.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля Мариотта, Шарля и Гей-Люссака:

T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.
p=\mathrm{const}\Rightarrow\frac{V}{T}=\mathrm{const} Закон Гей-Люссака.
V=\mathrm{const}\Rightarrow\frac{p}{T}=\mathrm{const} закон Шарля (второй закон Гей-Люссака, 1808 г.)

А в форме пропорции \frac{p_1\cdot V_1}{T_1}= \frac{p_2\cdot V_2}{T_2} этот закон удобен для расчёта перевода газа из одного состояния в другое.

С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

\,\mathrm{H}_2+\mathrm{Cl}_2=2\mathrm{HCl}.

1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

\,\mathrm{N}_2+3\mathrm{H}_2=2\mathrm{NH}_3.
T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.

Закон Бойля Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (16271691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (16201684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p=(\gamma-1)\rho\varepsilon,

где \,\gamma показатель адиабаты, \,\varepsilon внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение \,P\cdot V немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение \,P\cdot V увеличивается.

Втр 18 Июн 2013 18:15:40
>>50081994
В случае постоянной массы газа уравнение можно записать в виде:

\frac{p\cdot V}{T}=\nu\cdot R,
\frac{p\cdot V}{T}=\mathrm{const}.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля Мариотта, Шарля и Гей-Люссака:

T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.
p=\mathrm{const}\Rightarrow\frac{V}{T}=\mathrm{const} Закон Гей-Люссака.
V=\mathrm{const}\Rightarrow\frac{p}{T}=\mathrm{const} закон Шарля (второй закон Гей-Люссака, 1808 г.)

А в форме пропорции \frac{p_1\cdot V_1}{T_1}= \frac{p_2\cdot V_2}{T_2} этот закон удобен для расчёта перевода газа из одного состояния в другое.

С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

\,\mathrm{H}_2+\mathrm{Cl}_2=2\mathrm{HCl}.

1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

\,\mathrm{N}_2+3\mathrm{H}_2=2\mathrm{NH}_3.
T=\mathrm{const}\Rightarrow p\cdot V=\mathrm{const} закон Бойля Мариотта.

Закон Бойля Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (16271691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (16201684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p=(\gamma-1)\rho\varepsilon,

где \,\gamma показатель адиабаты, \,\varepsilon внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение \,P\cdot V немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение \,P\cdot V увеличивается.

Втр 18 Июн 2013 18:16:20
>>50081994
Он просто мудак, которому нечем заняться

Втр 18 Июн 2013 18:16:29
>>50082019
Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

\qquad P\sim{T}

или

\frac{P}{T}=k

где:

P давление газа,
T температура газа (в градусах Кельвина),
k константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде:

\frac{P_1}{T_1}=\frac{P_2}{T_2} \qquad \mathrm{or} \qquad {P_1}{T_2}={P_2}{T_1}.

Закон Амонтона о давлении и температуре: закон давления, описанный выше, должен быть на самом деле приписан Гильому Амонтону, который в начале XVIII века (точнее между 1700 и 1702 годом[1][2]) обнаружил, что давление фиксированной массы газа, поддерживаемого при постоянном объёме, пропорционально его температуре. Амонтон обнаружил это при постройке [воздушного термометраk. Называть это закон законом Гей-Люссака просто некорректно, поскольку Гей-Люссак исследовал взаимосвязь между объёмом и температурой, а не давлением и температурой.

Закон Шарля был известен как закон Шарля и Гей-Люссака, поскольку Гей-Люссак опубликовал его в 1802 году с использованием по большей части неопубликованных с 1787 года данных Шарля. Закон Гей-Люссака, закон Шарля и закон Бойля Мариотта все вместе образуют объединённый газовый закон. В сочетании с законом Авогадро эти три газовых закона обобщаются до уравнения состояния идеального газа.

Втр 18 Июн 2013 18:16:41
>>50082062
Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

\qquad P\sim{T}

или

\frac{P}{T}=k

где:

P давление газа,
T температура газа (в градусах Кельвина),
k константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде:

\frac{P_1}{T_1}=\frac{P_2}{T_2} \qquad \mathrm{or} \qquad {P_1}{T_2}={P_2}{T_1}.

Закон Амонтона о давлении и температуре: закон давления, описанный выше, должен быть на самом деле приписан Гильому Амонтону, который в начале XVIII века (точнее между 1700 и 1702 годом[1][2]) обнаружил, что давление фиксированной массы газа, поддерживаемого при постоянном объёме, пропорционально его температуре. Амонтон обнаружил это при постройке [воздушного термометраk. Называть это закон законом Гей-Люссака просто некорректно, поскольку Гей-Люссак исследовал взаимосвязь между объёмом и температурой, а не давлением и температурой.

Закон Шарля был известен как закон Шарля и Гей-Люссака, поскольку Гей-Люссак опубликовал его в 1802 году с использованием по большей части неопубликованных с 1787 года данных Шарля. Закон Гей-Люссака, закон Шарля и закон Бойля Мариотта все вместе образуют объединённый газовый закон. В сочетании с законом Авогадро эти три газовых закона обобщаются до уравнения состояния идеального газа.

Втр 18 Июн 2013 18:16:56
>>50082062
Нет-нет. Все в порядке. Я тоже хотел тем же самым заняться, но он успел раньше меня.

Втр 18 Июн 2013 18:17:08
>>50082019
Элитная сажа? Сходи к сабатонопетухам, они там жалуются, что у них сажа не математическая.

Втр 18 Июн 2013 18:17:50
>>50082099
Значит ты такой же мудак.

Втр 18 Июн 2013 18:18:22
>>50082062
Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон зписывают так:

\qquad P\sim{T}

или

\frac{P}{T}=k

где:

P давление газа,
T температура газа (в градусах Кельвина),
k константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде:

\frac{P_1}{T_1}=\frac{P_2}{T_2} \qquad \mathrm{or} \qquad {P_1}{T_2}={P_2}{T_1}.

Закон Амонтона о давлении и температуре: закон давления, описанный выше, должен быть на самом деле приписан Гильому Амонтону, который в начале XVIII века (точнее между 1700 и 1702 годом[1][2]) обнаружил, что давление фиксированной массы газа, поддерживаемого при постоянном объёме, пропорционально его температуре. Амонтон обнаружил это при постройке [воздушного термометраk. Называть это закон законом Гей-Люссака просто некорректно, поскольку Гей-Люссак исследовал взаимосвязь между объёмом и температурой, а не давлением и температурой.

Закон Шарля был известен как закон Шарля и Гей-Люссака, поскольку Гей-Люссак опубликовал его в 1802 году с использованием по большей части неопубликованных с 1787 года данных Шарля. Закон Гей-Люссака, закон Шарля и закон Бойля Мариотта все вместе образуют объединённый газовый закон. В сочетании с законом Авогадро эти три газовых закона обобщаются до уравнения состояния идеального газа.

Втр 18 Июн 2013 18:18:42
>>50082116
Для получения энергетических уровней в атоме водорода в рамках модели Бора записывается второй закон Ньютона для движения электрона по круговой орбите в поле кулоновской силы притяжения:

{m v^2\over r} = {Zk e^2 \over r^2},

где m масса электрона, e его заряд, Z заряд ядра и k кулоновская константа, зависящая от выбора системы единиц. Это соотношение позволяет выразить скорость электрона через радиус его орбиты:

v_k = \sqrt{ Zk e^2 \over m r}.

Энергия электрона равна разности кинетической энергии движения и его потенциальной энергии:

E_k = \frac{m v^2}{2} - {Zk e^2 \over r} = - { Zk e^2 \over 2r}.

Используя правило квантования Бора, можно записать:

m v r = \sqrt{Zk e^2 m r}=\hbar n,

откуда радиус орбиты выражается через квантовое число n. Подстановка радиуса в выражение для энергии даёт:

R_E = { m(k e^2)^2 \over 2 \hbar^2} 13,6 эВ

называется постоянной Ридберга. Она равна энергии связи электрона в атоме водорода в основном состоянии, т.е. минимальной энергии, необходимой для ионизации атома водорода в низшем (стабильном) энергетическом состоянии.

Втр 18 Июн 2013 18:18:52
>>50082168
Для получения энергетических уровней в атоме водорода в рамках модели Бора записывается второй закон Ньютона для движения электрона по круговой орбите в поле кулоновской силы притяжения:

{m v^2\over r} = {Zk e^2 \over r^2},

где m масса электрона, e его заряд, Z заряд ядра и k кулоновская константа, зависящая от выбора системы единиц. Это соотношение позволяет выразить скорость электрона через радиус его орбиты:

v_k = \sqrt{ Zk e^2 \over m r}.

Энергия электрона равна разности кинетической энергии движения и его потенциальной энергии:

E_k = \frac{m v^2}{2} - {Zk e^2 \over r} = - { Zk e^2 \over 2r}.

Используя правило квантования Бора, можно записать:

m v r = \sqrt{Zk e^2 m r}=\hbar n,

откуда радиус орбиты выражается через квантовое число n. Подстановка радиуса в выражение для энергии даёт:

R_E = { m(k e^2)^2 \over 2 \hbar^2} 13,6 эВ

называется постоянной Ридберга. Она равна энергии связи электрона в атоме водорода в основном состоянии, т.е. минимальной энергии, необходимой для ионизации атома водорода в низшем (стабильном) энергетическом состоянии.

Втр 18 Июн 2013 18:18:55
>>50082168
Нет, не я :3

Втр 18 Июн 2013 18:19:54
Для получения энергетических уровней в атоме водорода в рамках модели Бора записывается второй закон Ньютона для движения электрона по круговой орбите в поле кулоновской силы притяжения:

{m v^2\over r} = {Zk e^2 \over r^2},

где m масса электрона, e его заряд, Z заряд ядра и k кулоновская константа, зависящая от выбора системы единиц. Это соотношение позволяет выразить скорость электрона через радиус его орбиты:

v_k = \sqrt{ Zk e^2 \over m r}.

Энергия электрона равна разности кинетической энергии движения и его потенциальной энергии:

E_k = \frac{m v^2}{2} - {Zk e^2 \over r} = - { Zk e^2 \over 2r}.

Используя правило квантования Бора, можно записать:

m v r = \sqrt{Zk e^2 m r}=\hbar n,

откуда радиус орбиты выражается через квантовое число n. Подстановка радиуса в выражение для энергии даёт:

R_E = { m(k e^2)^2 \over 2 \hbar^2} 13,6 эВ

называется постоянной Ридберга. Она равна энергии связи электрона в атоме водорода в основном состоянии, т.е. минимальной энергии, необходимой для ионизации атома водорода в низшем (стабильном) энергетическом состоянии.


← К списку тредов